An increasing number of couples require medical assistance to achieve a pregnancy, and more than 2% of the births in Western countries now result from assisted reproductive technologies. To identify genetic variants responsible for male infertility, we performed a whole-genome SNP scan on patients presenting with total globozoospermia, a primary infertility phenotype characterized by the presence of 100% round acrosomeless spermatozoa in the ejaculate. This strategy allowed us to identify in most patients (15/20) a 200 kb homozygous deletion encompassing only DPY19L2, which is highly expressed in the testis. Although there was no known function for DPY19L2 in humans, previous work indicated that its ortholog in C. elegans is involved in cell polarity. In man, the DPY19L2 region has been described as a copy-number variant (CNV) found to be duplicated and heterozygously deleted in healthy individuals. We show here that the breakpoints of the deletions are located on a highly homologous 28 kb low copy repeat (LCR) sequence present on each side of DPY19L2, indicating that the identified deletions were probably produced by nonallelic homologous recombination (NAHR) between these two regions. We demonstrate that patients with globozoospermia have a homozygous deletion of DPY19L2, thus indicating that DPY19L2 is necessary in men for sperm head elongation and acrosome formation. A molecular diagnosis can now be proposed to affected men; the presence of the deletion confirms the diagnosis of globozoospermia and assigns a poor prognosis for the success of in vitro fertilization.
Infertility concerns a minimum of 70 million couples worldwide. An important proportion of cases is believed to have a genetic component, yet few causal genes have been identified so far. In a previous study, we demonstrated that a homozygous mutation (c.144delC) in the Aurora Kinase C (AURKC) gene led to the production of large-headed polyploid multi-flagellar spermatozoa, a primary infertility phenotype mainly observed in North Africans. We now want to estimate the prevalence of the defect, to improve our understanding of AURKC physiopathology in spermatogenesis and assess its implication in oogenesis. A carrier frequency of 1/50 was established from individuals from the Maghrebian general population, comparable to that of Y-microdeletions, thus far the only known recurrent genetic event altering spermatogenesis. A total of 62 patients were genotyped, all who had a typical phenotype with close to 100% large-headed spermatozoa were homozygously mutated (n = 32), whereas no AURKC mutations were detected in the others. Two homozygous females were identified; both were fertile indicating that AURKC is not indispensible in oogenesis. Previous FISH results had showed a great chromosomal heterogeneity in these patient's spermatozoa. We demonstrate here by flow cytometry that all spermatozoa have in fact a homogeneous 4C DNA content and are thus all blocked before the first meiotic division. Our data thus indicate that a functional AURKC protein is necessary for male meiotic cytokinesis while its absence does not impair oogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.