Background Community-based management by heart failure specialist nurses (HFSNs) is key to improving self-care in heart failure with reduced ejection fraction. Remote monitoring (RM) can aid nurse-led management, but in the literature, user feedback evaluation is skewed in favor of the patient rather than nursing user experience. Furthermore, the ways in which different groups use the same RM platform at the same time are rarely directly compared in the literature. We present a balanced semantic analysis of user feedback from patient and nurse perspectives of Luscii, a smartphone-based RM strategy combining self-measurement of vital signs, instant messaging, and e-learning. Objective This study aims to (1) evaluate how patients and nurses use this type of RM (usage type), (2) evaluate patients’ and nurses’ user feedback on this type of RM (user experience), and (3) directly compare the usage type and user experience of patients and nurses using the same type of RM platform at the same time. Methods We performed a retrospective usage type and user experience evaluation of the RM platform from the perspective of both patients with heart failure with reduced ejection fraction and the HFSNs using the platform to manage them. We conducted semantic analysis of written patient feedback provided via the platform and a focus group of 6 HFSNs. Additionally, as an indirect measure of tablet adherence, self-measured vital signs (blood pressure, heart rate, and body mass) were extracted from the RM platform at onboarding and 3 months later. Paired 2-tailed t tests were used to evaluate differences between mean scores across the 2 timepoints. Results A total of 79 patients (mean age 62 years; 35%, 28/79 female) were included. Semantic analysis of usage type revealed extensive, bidirectional information exchange between patients and HFSNs using the platform. Semantic analysis of user experience demonstrates a range of positive and negative perspectives. Positive impacts included increased patient engagement, convenience for both user groups, and continuity of care. Negative impacts included information overload for patients and increased workload for nurses. After the patients used the platform for 3 months, they showed significant reductions in heart rate (P=.004) and blood pressure (P=.008) but not body mass (P=.97) compared with onboarding. Conclusions Smartphone-based RM with messaging and e-learning facilitates bilateral information sharing between patients and nurses on a range of topics. Patient and nurse user experience is largely positive and symmetrical, but there are possible negative impacts on patient attention and nurse workload. We recommend RM providers involve patient and nurse users in platform development, including recognition of RM usage in nursing job plans.
BACKGROUND Community-based management by heart failure specialist nurses (HFSNs) is key to improving self-care in heart failure with reduced ejection fraction. Remote monitoring (RM) can aid nurse-led management, but in the literature, user feedback evaluation is skewed in favor of the patient rather than nursing user experience. Furthermore, the ways in which different groups use the same RM platform at the same time are rarely directly compared in the literature. We present a balanced semantic analysis of user feedback from patient and nurse perspectives of Luscii, a smartphone-based RM strategy combining self-measurement of vital signs, instant messaging, and e-learning. OBJECTIVE This study aims to (1) evaluate how patients and nurses use this type of RM (usage type), (2) evaluate patients’ and nurses’ user feedback on this type of RM (user experience), and (3) directly compare the usage type and user experience of patients and nurses using the same type of RM platform at the same time. METHODS We performed a retrospective usage type and user experience evaluation of the RM platform from the perspective of both patients with heart failure with reduced ejection fraction and the HFSNs using the platform to manage them. We conducted semantic analysis of written patient feedback provided via the platform and a focus group of 6 HFSNs. Additionally, as an indirect measure of tablet adherence, self-measured vital signs (blood pressure, heart rate, and body mass) were extracted from the RM platform at onboarding and 3 months later. Paired 2-tailed <i>t</i> tests were used to evaluate differences between mean scores across the 2 timepoints. RESULTS A total of 79 patients (mean age 62 years; 35%, 28/79 female) were included. Semantic analysis of usage type revealed extensive, bidirectional information exchange between patients and HFSNs using the platform. Semantic analysis of user experience demonstrates a range of positive and negative perspectives. Positive impacts included increased patient engagement, convenience for both user groups, and continuity of care. Negative impacts included information overload for patients and increased workload for nurses. After the patients used the platform for 3 months, they showed significant reductions in heart rate (<i>P</i>=.004) and blood pressure (<i>P</i>=.008) but not body mass (<i>P=</i>.97) compared with onboarding. CONCLUSIONS Smartphone-based RM with messaging and e-learning facilitates bilateral information sharing between patients and nurses on a range of topics. Patient and nurse user experience is largely positive and symmetrical, but there are possible negative impacts on patient attention and nurse workload. We recommend RM providers involve patient and nurse users in platform development, including recognition of RM usage in nursing job plans.
Background Despite effective therapies, the economic burden of heart failure with reduced ejection fraction (HFrEF) is driven by frequent hospitalizations. Treatment optimization and admission avoidance rely on frequent symptom reviews and monitoring of vital signs. Remote monitoring (RM) aims to prevent admissions by facilitating early intervention, but the impact of noninvasive, smartphone-based RM of vital signs on secondary health care use and costs in the months after a new diagnosis of HFrEF is unknown. Objective The purpose of this study is to conduct a secondary care health use and health-economic evaluation for patients with HFrEF using smartphone-based noninvasive RM and compare it with matched controls receiving usual care without RM. Methods We conducted a retrospective study of 2 cohorts of newly diagnosed HFrEF patients, matched 1:1 for demographics, socioeconomic status, comorbidities, and HFrEF severity. They are (1) the RM group, with patients using the RM platform for >3 months and (2) the control group, with patients referred before RM was available who received usual heart failure care without RM. Emergency department (ED) attendance, hospital admissions, outpatient use, and the associated costs of this secondary care activity were extracted from the Discover data set for a 3-month period after diagnosis. Platform costs were added for the RM group. Secondary health care use and costs were analyzed using Kaplan-Meier event analysis and Cox proportional hazards modeling. Results A total of 146 patients (mean age 63 years; 42/146, 29% female) were included (73 in each group). The groups were well-matched for all baseline characteristics except hypertension (P=.03). RM was associated with a lower hazard of ED attendance (hazard ratio [HR] 0.43; P=.02) and unplanned admissions (HR 0.26; P=.02). There were no differences in elective admissions (HR 1.03, P=.96) or outpatient use (HR 1.40; P=.18) between the 2 groups. These differences were sustained by a univariate model controlling for hypertension. Over a 3-month period, secondary health care costs were approximately 4-fold lower in the RM group than the control group, despite the additional cost of RM itself (mean cost per patient GBP £465, US $581 vs GBP £1850, US $2313, respectively; P=.04). Conclusions This retrospective cohort study shows that smartphone-based RM of vital signs is feasible for HFrEF. This type of RM was associated with an approximately 2-fold reduction in ED attendance and a 4-fold reduction in emergency admissions over just 3 months after a new diagnosis with HFrEF. Costs were significantly lower in the RM group without increasing outpatient demand. This type of RM could be adjunctive to standard care to reduce admissions, enabling other resources to help patients unable to use RM.
IntroductionSystemic biologic agents can increase the risk of reactivation of latent tuberculosis (TB). Prior to initiation, screening for latent TB using an interferon-γ (IFN-γ) release assay (IGRA) is recommended. There is concern that false negative IGRAs may be more likely in this context.MethodsThis retrospective analysis of IGRA, specifically TSPOT.TB, results and outcomes of patients already on or due to start biologics identifies the rate of TB reactivation in a low TB incidence setting. Additionally, we estimate the negative predictive value (NPV) of IGRAs in this population.ResultsPatients on biologics were more likely to have a negative IGRA result than patients not on biologics. There was no statistically significant change in conversion or reversion rates between groups. Of 9263 patients on biologics, 19 developed active TB after starting biologics at an incidence of 55.1 per 100 000 patient years. This occurred despite screening in half of the 16 patients for whom we were able to review medical records. Most drugs implicated were known to be high risk, although rituximab and natalizumab were being taken by 5 patients and 1 patient respectively. The TSPOT.TB NPV was 99.20% and dropped only slightly to 99.17% when we simulated an approach where all borderline IGRA results were regarded as being negative.ConclusionNegative IGRA results confer a low risk of subsequent active TB in patients on biologics in a low incidence setting. However, continued awareness is needed given that a number of active TB cases will have had a prior negative result.
BACKGROUND Despite effective therapies, the economic burden of heart failure with reduced ejection fraction (HFrEF) is driven by frequent hospitalizations. Treatment optimization and admission avoidance rely on frequent symptom reviews and monitoring of vital signs. Remote monitoring (RM) aims to prevent admissions by facilitating early intervention, but the impact of noninvasive, smartphone-based RM of vital signs on secondary health care use and costs in the months after a new diagnosis of HFrEF is unknown. OBJECTIVE The purpose of this study is to conduct a secondary care health use and health-economic evaluation for patients with HFrEF using smartphone-based noninvasive RM and compare it with matched controls receiving usual care without RM. METHODS We conducted a retrospective study of 2 cohorts of newly diagnosed HFrEF patients, matched 1:1 for demographics, socioeconomic status, comorbidities, and HFrEF severity. They are (1) the RM group, with patients using the RM platform for >3 months and (2) the control group, with patients referred before RM was available who received usual heart failure care without RM. Emergency department (ED) attendance, hospital admissions, outpatient use, and the associated costs of this secondary care activity were extracted from the Discover data set for a 3-month period after diagnosis. Platform costs were added for the RM group. Secondary health care use and costs were analyzed using Kaplan-Meier event analysis and Cox proportional hazards modeling. RESULTS A total of 146 patients (mean age 63 years; 42/146, 29% female) were included (73 in each group). The groups were well-matched for all baseline characteristics except hypertension (<i>P</i>=.03). RM was associated with a lower hazard of ED attendance (hazard ratio [HR] 0.43; <i>P</i>=.02) and unplanned admissions (HR 0.26; <i>P</i>=.02). There were no differences in elective admissions (HR 1.03, <i>P</i>=.96) or outpatient use (HR 1.40; <i>P</i>=.18) between the 2 groups. These differences were sustained by a univariate model controlling for hypertension. Over a 3-month period, secondary health care costs were approximately 4-fold lower in the RM group than the control group, despite the additional cost of RM itself (mean cost per patient GBP £465, US $581 vs GBP £1850, US $2313, respectively; <i>P</i>=.04). CONCLUSIONS This retrospective cohort study shows that smartphone-based RM of vital signs is feasible for HFrEF. This type of RM was associated with an approximately 2-fold reduction in ED attendance and a 4-fold reduction in emergency admissions over just 3 months after a new diagnosis with HFrEF. Costs were significantly lower in the RM group without increasing outpatient demand. This type of RM could be adjunctive to standard care to reduce admissions, enabling other resources to help patients unable to use RM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.