The adenosine A1 receptor (A1R) is a G protein-coupled receptor (GPCR) for adenosine, a ubiquitous neuromodulator, and thus regulates neuronal excitability, as well as arousal and sensitivity to pain. In addition, we have previously described a new mode of action for A1R: in cerebellar Purkinje cells, its activation attenuates neuronal responses to glutamate, as mediated by the type-1 metabotropic glutamate receptor (mGluR1). mGluR1 is also a GPCR, and elicits such responses as long-term depression of the postsynaptic response to glutamate, a cellular basis for cerebellar motor learning. Here, we explore in greater detail the interaction between A1R and mGluR1 using non-neuronal cells. Co-immunoprecipitation and Förster resonance energy transfer (FRET) analysis reveal that A1R and mGluR1 form a complex. Furthermore, we found that mGluR1 activation inhibits A1R signaling, as measured by changes in intracellular cAMP. These findings demonstrate that A1R and mGluR1 have the intrinsic ability to form a heteromeric complex and mutually modulate signaling. This interaction may represent a new form of intriguing GPCR-mediated cellular responses.
The amyloid-β protein precursor (AβPP) is cleaved by a transmembrane protease termed β-site AβPP cleavage enzyme (BACE1), which is being explored as a target for therapy and prevention of Alzheimer's disease (AD). Although genetic deletion of BACE1 results in abolished amyloid pathology in AD model mice, it also results in neurodevelopmental phenotypes such as hypomyelination and synaptic loss, observed in schizophrenia and autism-like phenotype. These lines of evidence indicate that the inhibition of BACE1 causes adverse side effects during the neurodevelopmental stage. However, the effects of the inhibition of BACE1 activity on already developed neurons remain unclear. Here, we utilized hippocampal slice cultures as an ex vivo model that enabled continuous and long-term analysis for the effect of BACE1 inhibition on neuronal circuits and synapses. Temporal changes in synaptic proteins in hippocampal slices indicated acute synaptic loss, followed by synapse formation and maintenance phases. Long-term BACE1 inhibition in the neurodevelopmental stage caused the loss of synaptic proteins but failed to alter synaptic proteins in the already developed maintenance stage. These data indicate that BACE1 function on synapses is dependent on synaptic developmental stages, and our study provides a useful model to observe the long-term effect of BACE1 activity in the brain, and to evaluate adverse effects of BACE inhibitors.
Silica nanoparticles (SiNPs) are produced on an industrial scale and used in various fields including health care, because silica is stable, inexpensive, and easy to handle. Despite these benefits, there is concern that exposure to SiNPs may lead to adverse effects in certain types of cells or tissues, such as hemolysis, immune responses, and developmental abnormalities in the brain and developing embryos. Although investigations on the toxicity of SiNPs against neurons are essential for medicinal use, only a few studies have assessed the direct effects of SiNPs on cells derived from the central nervous system. In this study, we investigated the toxic effects of SiNPs on primary cultures of hippocampal cells, using SiNPs with diameters of 10-1500 nm. We showed that treatment with SiNPs caused oxidative stress and cell death. Furthermore, we found that these cytotoxicities were dependent on the particle size, concentration, and surface charge of SiNPs, as well as the treatment temperature. The toxicity was reduced by SiNP surface functionalization or protein coating and by pretreating cells with an antioxidant, suggesting that contact-induced oxidative stress may be partially responsible for SiNP-induced cell death. These data will be valuable for utilizing SiNPs in biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.