Abstract. In this study, we prepared essential oil (EO) from waste wood chips made from used sake barrels (USBs) of Japanese cedar (i.e., EO-USB) by steam distillation. We found that EO-USB and three commercially purchased EOs derived from xylem tissue of Japanese woods, such as Japanese cedar (Cryptomeria japonica), Japanese cypress (Chamaecyparis obtusa) and false arborvitae (Thujopsis dolabrata), suppressed fungal growth activity against Trichophyton rubrum, which is the cause of tinea disease. The magnitude of the suppressive effects of the EOs ranked as follows: T. dolabrata > USB = C. japonica > C. obtusa. These EOs also inhibited the activity of DNA polymerase in an extract from T. rubrum mycelia with the following ranking: T. dolabrata > USB = C. japonica > C. obtusa. In addition, 50 µg/ml of EO-USB showed antifungal properties, killing T. rubrum mycelia at 27-42˚C in 20 min. By gas chromatography/mass spectrometry analysis, the main sesquiterpenes in EO-USB were δ-cadinene (25.94%) and epi-cubenol (11.55%), and the composition of EO-USB was approximately the same as that of EO-C. japonica. Three prepared sesquiterpenes, δ-cadinene, epi-cubenol and β-eudesmol, inhibited the fungal growth and DNA polymerase activities of T. rubrum, and epi-cubenol showed the strongest inhibition among the compounds tested. These sesquiterpenes had no inhibitory effects on the activities of other DNA metabolic enzymes, such as DNA topoisomerase II, IMP dehydrogenase, polynucleotide kinase and deoxyribonuclease from T. rubrum. Taken together, these results suggest that EO-USB containing epi-cubenol may be useful for its anti-tinea disease properties, which are based on DNA polymerase inhibition.
Taru-sake is a Japanese sake characterized by the refreshing wooden aroma of Japanese cedar. In our previous study, we reported the isolation and identification as well as the biochemical functions of its unique ingredients such as sesquiterpenoides, diterpenes, norlignanes and ferulic acid which were derived from the cedar cask. There have been no reports concerning the effects of these constituents on flavor or pairing sake with food. In this study, we assessed the compatibility between sake and oily food. In a sensory test, it was suggested that taru-sake leaves less greasy aftertaste in the mouth than regular sake when paired with oily food. Tensions at the interface between sake and oils were measured by the Wilhelmy plate method, and taru-sake/oils revealed lower interfacial tension than regular sake/oils. Tarusake seems to contribute to the emulsification of oil since interfacial tension also plays an important role in emulsification. Thus, it is likely that oil as an emulsion can be easily washed off, which results in less greasy aftertaste in the mouth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.