The amino acid sequences deduced from cDNA analyses revealed that human leucocyte L-plastin phosphorylated in response to interleukin 1, 2 closely resembles a chicken intestinal microvilli protein, fimbrin, that bundles actin filaments [de Arruda et al. (1990) J. Cell Biol. 111, 1069-1079]. In the present work, it was observed that unphosphorylated L-plastin isolated from human T cells bundled F-actin just as fimbrin does. L-Plastin acted on T cell beta-actin, but hardly acted on muscle alpha-actin or chicken gizzard gamma-actin, whereas fimbrin bundled muscle alpha-actin. Unlike fimbrin, L-plastin's actin-bundling action was strictly calcium-dependent: the bundles were formed at pCa 7, but not at pCa 6. Under suitable conditions, approximately one molecule of L-plastin bound to 8 molecules of actin monomer in the actin filament.
The mutant c-erbB-2 protein with Glu instead of Val-659 exhibited transforming activity in NIH 3T3 cells. This protein showed enhanced tyrosine kinase activity in vitro and enhanced autophosphorylation at Tyr-1248 located proximal to the carboxyl terminus. Enhanced tyrosine phosphorylation of several cellular proteins was detected in cells expressing the Glu-659 c-erbB-2 protein. Introduction of an additional mutation at the ATP-binding site to Met) of this protein resulted in abolition of its transforming ability. These data indicate that the transforming potential of c-erbB-2 is closely correlated with elevated tyrosine kinase activity of the gene product. To investigate the role of autophosphorylation in cell transformation, we introduced an additional mutation at the autophosphorylation site of the Glu-659 c-erbB-2 protein (Tyr-1248 to Phe). This mutant protein exhibited lower tyrosine kinase activity and lower transforming activity. On the other hand, when the carboxyl-terminal 230 amino acid residues were deleted from the c-erbB-2 protein, the tyrosine kinase activity and cell-transforming activity of the protein were enhanced. Thus, the carboxyl-terminal domain, which contains the major autophosphorylation site, Tyr-1248, may regulate cellular transformation negatively and autophosphorylation may eliminate this negative regulation.
In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.