A computer simulation was carried out to investigate the influence of nonpulsatile left ventricular assistance on hemodynamics. A simulation circuit was constructed to represent the circulatory system. A source of current was added to denote the nonpulsatile blood pump. The left and right ventricles were replaced by variable compliances. Left heart failure was simulated by decreasing the amount of compliance change of the left ventricle. We introduced a pulsatility indicator (PI) to clarify the pulsatility characteristics in the hemodynamics; this PI was defined as the ratio of the pulse pressure (PP) to the mean aortic pressure (AoP). When nonpulsatile bypass flow increased, the mean AoP, tension time index (TTI), and diastolic pressure time index (DPTI) increased, and cardiac output, PP, and PI decreased. When assisted flow increased with the constant total flow rate, the mean AoP and DPTI changed little; the PP, TTI, and PI decreased, and the endocardial viability rate increased. The PI would be helpful in evaluating the effect of pulsatility.
Working toward a completely implantable total artificial heart, we have designed an eccentric roller type total artificial heart. The actuator of this artificial heart is a drum type eccentric roller that squeezes the blood chambers. The blood chambers are made of silicone rubber and are torus in shape. The shape of the artificial heart is an almost circular cylinder, and its length and diameter are 10 cm and 8 cm, respectively. The 2 main characteristics of this artificial heart are that it discharges blood in a pulsatile mode and that it requires no reversing of the motor. Because we have not completed the artificial heart yet, we have tested the eccentric roller mechanism on the prototype with an overflow type mock circulation with a 100 mm Hg afterload. The prototype worked at the roller speeds of 50, 100, and 150 rpm with flow rates of 1.7, 3.7, and 5.4 L/min, respectively. Next the prototype was connected to a Donovan type mock circulatory system and worked at roller speeds of 88-214 rpm with flow rates of 3.0-8.4 L/min against mean afterloads of 82-120 mm Hg.
We have developed a direct mechanical left ventricular assist device (DMLVAD) for severe left ventricular failure. The DMLVAD was attached to the left ventricle and compressed the heart by a pneumatic driving unit. In a mock circulation model with an extracted nonbeating heart, a cardiac output (CO) of 1.93 L/min was obtained at a driving pressure of 200 mm Hg. In a canine left ventricular failure model induced by injection of sodium hydroxide into the myocardium, the systolic arterial pressure, systolic left ventricular pressure, maximum LV dP/dt, peak flow, and CO increased by 21,24,58,144, and 37%, respectively. The mean left atrial pressure also decreased by 15% when the DMLVAD was driven. These effects were most prominent when the mean left atrial pressure was over 15 mm Hg, and the driving pressure was over 100 rnrn Hg. Compression at late systole was more effective in obtaining greater CO. We suggest that the DMLVAD could be an optional circulatory assist device for patients with left ventricular failure awaiting heart transplantation. Key Words: Left ventricular assist device-Artificial heart-Left ventricular failure-Circulatory support-Direct mechanical assist device.Although heart transplantation is one of the most effective treatments in patients with severe heart failure refractory to other treatments, the shortage of donor hearts is a major problem (1-2). Thus, other circulatory support devices such as left ventricular assist devices and artificial hearts are being studied as potential substitutes. However, thrombus formation due to contact of the blood with these devices remains a major problem despite the recent development of new materials (3-4).O n the other hand, dynamic cardiomyoplasty, in which the whole heart is compressed from the outside by the patient's own skeletal muscle, has been applied in over 400 cases (5-9). Although the clinical applications of this technique remain limited, the incidence of thrombus formation is lowered considerably because the contact of the blood with foreign materials is avoided.Therefore, based on the idea that it might be possible to assist left ventricular contraction in severe cases of left ventricular failure by direct compression
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.