Yariv phenylglycosides [1,3,5-tri(p-glycosyloxyphenylazo)-2,4,6-trihydroxybenzene] are a group of chemical compounds that selectively bind to arabinogalactan proteins (AGPs), a type of plant proteoglycan. Yariv phenylglycosides are widely used as cytochemical reagents to perturb the molecular functions of AGPs as well as for the detection, quantification, purification, and staining of AGPs. However, the target structure in AGPs to which Yariv phenylglycosides bind has not been determined. Here, we identify the structural element of AGPs required for the interaction with Yariv phenylglycosides by stepwise trimming of the arabinogalactan moieties using combinations of specific glycoside hydrolases. Whereas the precipitation with Yariv phenylglycosides (Yariv reactivity) of radish (Raphanus sativus) root AGP was not reduced after enzyme treatment to remove a-L-arabinofuranosyl and b-glucuronosyl residues and b-1,6-galactan side chains, it was completely lost after degradation of the b-1,3-galactan main chains. In addition, Yariv reactivity of gum arabic, a commercial product of acacia (Acacia senegal) AGPs, increased rather than decreased during the repeated degradation of b-1,6-galactan side chains by Smith degradation. Among various oligosaccharides corresponding to partial structures of AGPs, b-1,3-galactooligosaccharides longer than b-1,3-galactoheptaose exhibited significant precipitation with Yariv in a radial diffusion assay on agar. A pull-down assay using oligosaccharides cross linked to hydrazine beads detected an interaction of b-1,3-galactooligosaccharides longer than b-1,3-galactopentaose with Yariv phenylglycoside. To the contrary, no interaction with Yariv was detected for b-1,6-galactooligosaccharides of any length. Therefore, we conclude that Yariv phenylglycosides should be considered specific binding reagents for b-1,3-galactan chains longer than five residues, and seven residues are sufficient for cross linking, leading to precipitation of the Yariv phenylglycosides.Arabinogalactan proteins (AGPs) are a type of plant proteoglycans consisting of a Hyp-rich core protein and large arabinogalactan (AG) moieties (Fincher et al., 1983;Nothnagel, 1997). Although there are many molecular species of AGP differentiated by their core proteins, the AG moieties commonly comprise b-1,3-galactan main chains and b-1,6-galactan side chains, to which L-Ara and other auxiliary sugars, such as GlcA, 4-O-methyl-GlcA, L-Fuc, L-Rha, and Xyl, are attached (Fincher et al., 1983;Nothnagel, 1997;Seifert and Roberts, 2007). A commercial product of AGPs prepared from the acacia (Acacia senegal) tree is known as gum arabic and utilized as a food stabilizer. In the Japanese herbal remedy Juzen-Taiho-To, AGs from Astragalus membranaceus are the active ingredient (Majewska-Sawka and Nothnagel, 2000;Kiyohara et al., 2002). In intact plants, AGPs are implicated in various physiological events and serve as extracellular constituents and signaling molecules. For instance, an AGP from stylar transmitting tissue attracts pollen tub...
The one-step conversion of ethanol to 1,3-butadiene was performed using talc containing Zn (talc/Zn) as a catalyst. The influence of the MgO and Zn in the talc on the formation rate and selectivity for 1,3-butadiene were investigated. MgO as a catalyst afforded 1,3-butadiene with a selectivity that was nearly the same as talc/Zn at ∼40% ethanol conversion at 673 K, although the rate of 1,3-butadiene formation over MgO was about 40 times lower than that over the talc/Zn. The introduced Zn cations were located in octahedral sites in place of Mg cations in the talc lattice. The Zn cations accelerated the rate of CHCHO formation from ethanol, resulting in an increase in the rate of 1,3-butadiene formation. However, the rate of CHCHO consumption to form crotonaldehyde was not influenced by Zn, although the distribution of crotonaldehyde was decreased with increasing Zn concentrations. X-ray photoelectron spectra of talc/Zn showed that the O binding energy was increased by increasing the concentration of Zn, while those of both Mg and Si were hardly influenced. DFT calculations were used to estimate the atomic charges on the O, Mg, Si, and Zn atoms when an atom of Zn per unit cell of talc was introduced into an octahedral site. On the basis of the results for the conversion of ethanol into 1,3-butadiene and the corresponding DFT calculations, the roles of the O, Zn, Mg, and Si atoms in the talc catalyst for the formation of 1,3-butadiene from ethanol were discussed.
A Lewis base catalyst Trip-SMe (Trip = triptycenyl) for electrophilic aromatic halogenation using Nhalosuccinimides (NXS) is introduced. In the presence of an appropriate activator (as a noncoordinating-anion source), a series of unactivated aromatic compounds were halogenated at ambient temperature using NXS. This catalytic system was applicable to transformations that are currently unachievable except for the use of Br 2 or Cl 2 : e.g., multihalogenation of naphthalene, regioselective bromination of BINOL, etc. Controlled experiments revealed that the triptycenyl substituent exerts a crucial role for the catalytic activity, and kinetic experiments implied the occurrence of a sulfonium salt [Trip-S(Me)Br][SbF 6 ] as an active species. Compared to simple dialkyl sulfides, Trip-SMe exhibited a significant charge-separated ion pair character within the halonium complex whose structural information was obtained by the single-crystal X-ray analysis. A preliminary computational study disclosed that the π system of the triptycenyl functionality is a key motif to consolidate the enhancement of electrophilicity.
Planar chiral [2]- and [3]rotaxanes constructed from pillar[5]arenes as wheels and pyridinium derivatives as axles were obtained in high yield using click reactions. The process of rotaxane formation was diastereoselective; the obtained [2]rotaxane was a racemic mixture consisting of (pS, pS, pS, pS, pS) and (pR, pR, pR, pR, pR) forms of the per-ethylated pillar[5]arene (C2) wheel, and other possible types of the [2]rotaxane did not form. Isolation of the enantiopure [2]rotaxanes with one axle through (pS, pS, pS, pS, pS)-C2 or (pR, pR, pR, pR, pR)-C2 wheels was accomplished. Furthermore, pillar[5]arene-based [3]rotaxane was successfully synthesized by attachment of two pseudo [2]rotaxanes onto a bifunctional linker. [3]Rotaxane formed in a 1:2:1 mixture with one axle threaded through two (pS, pS, pS, pS, pS)-C2, one (pS, pS, pS, pS, pS)-C2 and one (pR, pR, pR, pR, pR)-C2 (meso form), or two (pR, pR, pR, pR, pR)-C2 wheels. The [3]rotaxane enantiomers and the meso form were successfully isolated using appropriate chiral HPLC column chromatography. The procedure developed in this study is the starting point for the creation of pillar[5]arene-based interlocked molecules.
The spread of data-driven materials research has increased the need for systematically designed materials property databases. However, the development of polymer databases has lagged far behind other material systems. We present RadonPy, an open-source library that can automate the complete process of all-atom classical molecular dynamics (MD) simulations applicable to a wide variety of polymeric materials. Herein, 15 different properties were calculated for more than 1000 amorphous polymers. The MD-calculated properties were systematically compared with experimental data to validate the calculation conditions; the bias and variance in the MD-calculated properties were successfully calibrated by a machine learning technique. During the high-throughput data production, we identified eight amorphous polymers with extremely high thermal conductivity (>0.4 W ∙ m–1 ∙ K–1) and their underlying mechanisms. Similar to the advancement of materials informatics since the advent of computational property databases for inorganic crystals, database construction using RadonPy will promote the development of polymer informatics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.