An efficient method for the synthesis of fused heteroaromatic dihydrosiloles via Ni-catalyzed hydrosilylation/intramolecular Ir-catalyzed dehydrogenative coupling of the Si-H bond with the heteroaromatic C-H bond has been developed. The method is efficient for both electron-deficient and electron-rich heterocycles. It exhibits high functional group tolerance and good regioselectivity. Fused heteroaromatic dihydrosiloles can be smoothly halogenated and then oxidized or arylated. Application of these transformations allows obtaining highly functionalized heteroaromatic structures. A gram-scale synthesis of dihydropyridinosilole has also been accomplished using reduced amounts of Ni- and Ir-catalysts.
The regioselective carboindation of simple alkenes with indium tribromide and ketene silyl acetals was accomplished. Various alkenes such as ethylene, 1-alkenes, and cyclic alkenes were applicable for this reaction system. The alkylindium product from the carboindation of cyclohexene revealed an anti addition mechanism.
The indium triiodide catalyzed single-stage cascade reaction of N-sulfonyl amides with hydrosilanes and two types of organosilicon nucleophiles such as silyl cyanide and silyl enolates selectively promoted deoxygenative functionalization to give α-cyanoamines and β-aminocarbonyl compounds, respectively.
An indium triiodide catalyst promoted the direct transformation from esters to β-hydroxycarbonyl compounds using hydrosilanes and silyl enolates by a one-stage process. Various esters were applicable, and the high chemoselectivity of this system brings compatibility to many functional groups: alkenyl, alkynyl, chloro, and hydroxy.
The InI3‐catalyzed hydroallylation of esters by using hydro‐ and allysilanes under mild conditions has been accomplished. Many significant groups such as alkenyl, alkynyl, cyano, and nitro ones survive under these conditions. This reaction system provided routes to both homoallylic alcohols and ethers, in which either elimination of the alkoxy moiety or of the carbonyl oxygen atom could be freely selected by changing the substituents on the alkoxy moiety and on the hydrosilane. In addition, the hydroallylation of lactones took place without ring cleavage to produce the desired cyclic ethers in high yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.