SUMMARYPurpose: We assessed lateralization of interictal epileptiform discharges (IEDs) in children with intractable epilepsy secondary to tuberous sclerosis complexes (TSCs) during rapid eye movement sleep (R), compared with non-rapid eye movement sleep (NR) and wakefulness (W), to determine epileptogenicity of R-IEDs. Methods: We retrospectively studied 23 children with TSC, who underwent prolonged scalp video-electroencephalography (EEG) and magnetic resonance imaging (MRI). We determined the lateralization of ictal EEG, clinical semiology, and the largest tuber on MRI. We analyzed a minimum of 100 IEDs during R, NR, and W to classify right/left/generalized spikes to compare the lateralization with ictal EEG, clinical semiology, and MRI.
Dysregulation of epigenetic processes involving histone methylation induces neurodevelopmental impairments and has been implicated in schizophrenia (SCZ) and autism spectrum disorder (ASD). Variants in the gene encoding lysine demethylase 4C (KDM4C) have been suggested to confer a risk for such disorders. However, rare genetic variants in KDM4C have not been fully evaluated, and the functional impact of the variants has not been studied using patient-derived cells. In this study, we conducted copy number variant (CNV) analysis in a Japanese sample set (2605 SCZ and 1141 ASD cases, and 2310 controls). We found evidence for significant associations between CNVs in KDM4C and SCZ (p = 0.003) and ASD (p = 0.04). We also observed a significant association between deletions in KDM4C and SCZ (corrected p = 0.04). Next, to explore the contribution of single nucleotide variants in KDM4C, we sequenced the coding exons in a second sample set (370 SCZ and 192 ASD cases) and detected 18 rare missense variants, including p.D160N within the JmjC domain of KDM4C. We, then, performed association analysis for p.D160N in a third sample set (1751 SCZ and 377 ASD cases, and 2276 controls), but did not find a statistical association with these disorders. Immunoblotting analysis using lymphoblastoid cell lines from a case with KDM4C deletion revealed reduced KDM4C protein expression and altered histone methylation patterns. In conclusion, this study strengthens the evidence for associations between KDM4C CNVs and these two disorders and for their potential functional effect on histone methylation patterns.
The 3q29 deletion is one of the strongest risk factors (odds ratio > 40) for schizophrenia (SCZ) 1 and is associated with other psychiatric disorders including intellectual disability (ID), autism spectrum disorder, and bipolar disorder. 2 However, details of psychiatric manifestations and treatment responses have not been described in these patients. Therefore, we present the longitudinal clinical course of four Japanese SCZ patients with 3q29 deletion.
Disabled 1 (DAB1) is an intracellular adaptor protein in the Reelin signaling pathway and plays an essential role in correct neuronal migration and layer formation in the developing brain. DAB1 has been repeatedly reported to be associated with neurodevelopmental disorders including schizophrenia (SCZ) and autism spectrum disorders (ASD) in genetic, animal, and postmortem studies. Recently, increasing attention has been given to rare single-nucleotide variants (SNVs) found by deep sequencing of candidate genes. In this study, we performed exon-targeted resequencing of DAB1 in 370 SCZ and 192 ASD patients using next-generation sequencing technology to identify rare SNVs with a minor allele frequency <1%. We detected two rare missense mutations (G382C, V129I) and then performed a genetic association study in a sample comprising 1763 SCZ, 380 ASD, and 2190 healthy control subjects. Although no statistically significant association with the detected mutations was observed for either SCZ or ASD, G382C was found only in the case group, and in silico analyses and in vitro functional assays suggested that G382C alters the function of the DAB1 protein. The rare variants of DAB1 found in the present study should be studied further to elucidate their potential functional relevance to the pathophysiology of SCZ and ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.