Abstract-Recently, wireless sensor networks (WSNs) have provided many applications, which need precise sensing data analysis, in many areas. However, sensing datasets contain outliers sometimes. Although outliers rarely occur, they seriously reduce the precision of the sensing data analysis. In the past few years, many researches focused on outlier detection. However, many of them ignored one factor that WSNs are usually deployed in a dynamic environment that changes with time. Thus, we propose a new method, which is an unsupervised learning method based on mean-shift algorithm, for outlier detection that can be used in a dynamic environment for WSNs. To make our method adapt to a dynamic environment, we define two new distances for outlier detection. Moreover, the simulation shows that our method performed on real sensing dataset has ideal results; it finds outliers with a low false positive rate and has a high recall. For generality, we also test our method on different synthetic datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.