We achieved 50-Gb/s operation of a ring-resonator-based silicon modulator for the first time. The pin-diode phase shifter, which consists of a side-wall-grating waveguide, was loaded into the ring resonator. The forward-biased operation mode was applied, which exhibited a V(π)L as small as 0.28 V · cm at 25 GHz. The driving voltage and optical insertion loss at 50-Gb/s were 1.96 V(pp) and 5.2 dB, respectively.
We present high-speed operation of pin-diode-based silicon Mach-Zehnder modulators that have side-wall gratings on both sides of the waveguide core. The use of pre-emphasis signals generated with a finite impulse response digital filter was examined in the frequency domain to show how the filter works for different filter parameter sets. In large signal modulation experiments, V(π)L as low as 0.29 V·cm was obtained at 12.5 Gb/s using a fabricated modulator and the pre-emphasis technique. Operation of up to 25-Gb/s is possible using basically the same driving configurations.
We developed PIN-diode-based silicon Mach-Zehnder modulators, which have side-wall-gratings in the phaseshifter sections. Such passive waveguides with gratings were fabricated using ArF immersion lithography, which showed a small scattering loss of 0.4 dB/mm. We extensively investigated the forwardbiased operation of the modulators by using equivalent circuit analysis and the measurement of the fabricated devices. We argue carrier recombination time only plays a minor role for the overall performance of the modulator. Dependences of the modulation efficiency on other various critical parameters are discussed. In particular, if we use relatively short phase shifter, the forwardbiased operation provides smaller V π L than reversed one even at high frequency of 20 GHz, at the expense of the narrow bandwidth. Our approach enables high-speed operation up to 50 Gb/s, by using phase shifter as short as 250 μm and preemphasis signals. For 12.5-Gb/s operation, the modulator cell size was only 300 μm × 50 μm, which was suitable for the applications of high-density optical interconnects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.