Water deficit caused by global climate changes seriously endangers the survival of organisms and crop productivity, and increases environmental deterioration. Plants' resistance to drought involves global reprogramming of transcription, cellular metabolism, hormone signalling and chromatin modification. However, how these regulatory responses are coordinated via the various pathways, and the underlying mechanisms, are largely unknown. Herein, we report an essential drought-responsive network in which plants trigger a dynamic metabolic flux conversion from glycolysis into acetate synthesis to stimulate the jasmonate (JA) signalling pathway to confer drought tolerance. In Arabidopsis, the ON/OFF switching of this whole network is directly dependent on histone deacetylase HDA6. In addition, exogenous acetic acid promotes de novo JA synthesis and enrichment of histone H4 acetylation, which influences the priming of the JA signalling pathway for plant drought tolerance. This novel acetate function is evolutionarily conserved as a survival strategy against environmental changes in plants. Furthermore, the external application of acetic acid successfully enhanced the drought tolerance in Arabidopsis, rapeseed, maize, rice and wheat plants. Our findings highlight a radically new survival strategy that exploits an epigenetic switch of metabolic flux conversion and hormone signalling by which plants adapt to drought.
Epigenetic modifications change transcription patterns in multicellular organisms to achieve tissue-specific gene expression and inactivate alien DNA such as transposons or transgenes. In plants and animals, DNA methylation is involved in heritability and flexibility of epigenetic states, although its function is far from clear. We have isolated an Arabidopsis gene, MOM, whose product is required for the maintenance of transcriptional gene silencing. Mutation of this gene or depletion of its transcript by expression of antisense RNA reactivates transcription from several previously silent, heavily methylated loci. Despite this, the dense methylation at these reactivated loci is maintained even after nine generations, indicating that transcriptional activity and methylation pattern are inherited independently. The predicted MOM gene product is a nuclear protein of 2,001 amino acids containing a region similar to part of the ATPase region of the SWI2/SNF2 family, members of which are involved in chromatin remodelling. MOM is the first known molecular component that is essential for transcriptional gene silencing and does not affect methylation pattern. Thus, it may act downstream of methylation in epigenetic regulation, or be part of a new pathway that does not require methylation marks.
In mammals and plants, formation of heterochromatin is associated with hypermethylation of DNA at CpG sites and histone H3 methylation at lysine 9. Previous studies have revealed that maintenance of DNA methylation in Neurospora and Arabidopsis requires histone H3 methylation. A feedback loop from DNA methylation to histone methylation, however, is less understood. Its recent examination in Arabidopsis with a partial loss of function in DNA methyltransferase 1 (responsible for maintenance of CpG methylation) yielded conflicting results. Here we report that complete removal of CpG methylation in an Arabidopsis mutant null for DNA maintenance methyltransferase results in a clear loss of histone H3 methylation at lysine 9 in heterochromatin and also at heterochromatic loci that remain transcriptionally silent. Surprisingly, these dramatic alterations are not reflected in heterochromatin relaxation.
Constitutive heterochromatin is a compact, transcriptionally inert structure formed in gene-poor and repeat-and transposon-rich regions. In Arabidopsis, constitutive heterochromatin is characterized by hypermethylated DNA and histone H3 dimethylated at lysine (K) 9 (H3K9me2) together with depletion of histone H3 dimethylated at lysine 4 (H3K4me2). Here, we describe loci with intermediate properties of heterochromatin in which transcription downregulation is inherited in a manner similar to constitutive heterochromatin, although the loci are associated with opposing histone marks-H3K4me2 and H3K9me2. In the ddm1 (decrease in DNA methylation 1) mutants, their transcriptional activation is accompanied by the expected shift in the H3 modifications-depletion of H3K9me2 and enrichment in H3K4me2. In mom1 (Morpheus' molecule 1) mutants, however, a marked increase in transcription is not accompanied by detectable changes in the levels of H3K4me2 and H3K9me2. Therefore, transcriptional regulation in the intermediate heterochromatin involves two distinct epigenetic mechanisms. Interestingly, silent transgenic inserts seem to acquire properties characteristic of the intermediate heterochromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.