We conducted a large-scale in vitro study focused on the effects of low level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system in order to test the hypothesis that modulated RF fields may act as a DNA damaging agent. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced different levels of DNA damage. Human glioblastoma A172 cells and normal human IMR-90 fibroblasts from fetal lungs were exposed to mobile communication frequency radiation to investigate whether such exposure produced DNA strand breaks in cell culture. A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg and CW radiation at 80 mW/kg for 2 and 24 h, while IMR-90 cells were exposed to both W-CDMA and CW radiations at a SAR of 80 mW/kg for the same time periods. Under the same RF field exposure conditions, no significant differences in the DNA strand breaks were observed between the test groups exposed to W-CDMA or CW radiation and the sham exposed negative controls, as evaluated immediately after the exposure periods by alkaline comet assays. Our results confirm that low level exposures do not act as a genotoxicant up to a SAR of 800 mW/kg.
In this study, we investigated whether exposure to 2450 MHz high-frequency electromagnetic fields (HFEMFs) could act as an environmental insult to evoke a stress response in A172 cells, using HSP70 and HSP27 as stress markers. The cells were exposed to a 2450 MHz HFEMF with a wide range of specific absorption rates (SARs: 5-200 W/kg) or sham conditions. Because exposure to 2450 MHz HFEMF at 50-200 W/kg SAR causes temperature increases in culture medium, appropriate heat control groups (38-44 degrees C) were also included. The expression of HSP 70 and HSP 27, as well as the level of phosphorylated HSP 27 ((78)Ser) (p-HSP27), was determined by Western blotting. Our results showed that the expression of HSP 70 increased in a time and dose-dependent manner at >50 W/kg SAR for 1-3 h. A similar effect was also observed in corresponding heat controls. There was no significant change in HSP 27 expression caused by HFEMF at 5-200 W/kg or by comparable heating for 1-3 h. However, HSP 27 phosphorylation increased transiently at 100 and 200 W/kg to a greater extent than at 40-44 degrees C. Phosphorylation of HSP 27 reached a maximum after 1 h exposure at 100 W/kg HFEMF. Our results suggest that exposure to a 2450 MHz HFEMF has little or no apparent effect on HSP70 and HSP27 expression, but it may induce a transient increase in HSP27 Phosphorylation in A172 cells at very high SAR (>100 W/kg).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.