A dodecanethiolate-protected Pd(1)Au(24)(SC(12)H(25))(18) cluster, which is a mono-Pd-doped cluster of the well understood magic gold cluster Au(25)(SR)(18), was isolated in high purity using solvent fractionation and high-performance liquid chromatography (HPLC) after the preparation of dodecanethiolate-protected palladium-gold bimetal clusters. The cluster thus isolated was identified as the neutral [Pd(1)Au(24)(SC(12)H(25))(18)](0) from the retention time in reverse phase columns and by elemental analyses. The LDI mass spectrum of [Pd(1)Au(24)(SC(12)H(25))(18)](0) indicates that [Pd(1)Au(24)(SC(12)H(25))(18)](0) adopts a similar framework structure to Au(25)(SR)(18), in which an icosahedral Au(13) core is protected by six [-S-Au-S-Au-S-] oligomers. The optical absorption spectrum of [Pd(1)Au(24)(SC(12)H(25))(18)](0) exhibits peaks at approximately 690 and approximately 620 nm, which is consistent with calculated results on [Pd(1)@Au(24)(SC(1)H(3))(18)](0) in which the central gold atom of Au(25)(SC(1)H(3))(18) is replaced with Pd. These results strongly indicate that the isolated [Pd(1)Au(24)(SC(12)H(25))(18)](0) has a core-shell [Pd(1)@Au(24)(SC(12)H(25))(18)](0) structure in which the central Pd atom is surrounded by a frame of Au(24)(SC(12)H(25))(18). Experiments on the stability of the cluster showed that Pd(1)@Au(24)(SC(12)H(25))(18) is more stable against degradation in solution and laser dissociation than Au(25)(SC(12)H(25))(18). These results indicate that the doping of a central atom is a powerful method to increase the stability beyond the Au(25)(SR)(18) cluster.
We report on how the transition from the bulk structure to the cluster-specific structure occurs in n-dodecanethiolate-protected gold clusters, Au(n)(SC12)m. To elucidate this transition, we isolated a series of Au(n)(SC12)m in the n range from 38 to ∼520, containing five newly identified or newly isolated clusters, Au104(SC12)45, Au(∼226)(SC12)(∼76), Au(∼253)(SC12)(∼90), Au(∼356)(SC12)(∼112), and Au(∼520)(SC12)(∼130), using reverse-phase high-performance liquid chromatography. Low-temperature optical absorption spectroscopy, powder X-ray diffractometry, and density functional theory (DFT) calculations revealed that the Au cores of Au144(SC12)60 and smaller clusters have molecular-like electronic structures and non-fcc geometric structures, whereas the structures of the Au cores of larger clusters resemble those of the bulk gold. A new structure model is proposed for Au104(SC12)45 based on combined approach between experiments and DFT calculations.
CONSPECTUS: Metal alloys exhibit functionalities unlike those of single metals. Such alloying has drawn considerable research interest, particularly for nanoscale particles (metal clusters/nanoparticles), from the viewpoint of creating new functional nanomaterials. In gas phase cluster research, generated alloy clusters can be spatially separated with atomic precision in vacuum. Thus, the influences of increases or decreases in each element on the overall electronic structure of the cluster can be elucidated. However, to further understand the related mixing and synergistic effects, alloy clusters need to be produced on a large scale and characterized by various techniques. Because alloy clusters protected by thiolate (SR) can be synthesized by chemical methods and are stable in both solution and the solid state, these clusters are ideal study materials to better understand the mixing and synergistic effects. Moreover, the alloy clusters thus created have potential applications as functional materials. Therefore, since 2008, we have been working on establishing a precise synthesis method for SR-protected alloy clusters and elucidating their mixing and synergistic effects. Early research focused on the precise synthesis of alloy clusters wherein some of the Au in the stable SR-protected gold clusters ([Au 25 (SR) 18 ] − and [Au 38 (SR) 24 ] 0 ) is replaced by Pd, Ag, or Cu. These studies have shown that Pd, Ag, or Cu substitute at different metal sites. We also have examined the as-synthesized alloy clusters to clarify the effect of substitution by each element on the physical and chemical properties of the clusters. However, in early studies, the number of substitutions could not be controlled with atomic accuracy for [Au 25−x M x (SR) 18 ] − (M = Ag or Cu). Then, in following research, methods have been established to obtain alloy clusters with control over the composition. We have succeeded in developing a method for controlling the number of Ag substitutions with atomic precision and thereby elucidating the effect of Ag substitution on the electronic structure of clusters with atomic precision. Concurrently, we also studied alloy clusters containing multiple heteroelements with different preferential substitution sites. These results revealed that the effects of substitution of each element can be superimposed on the cluster by combining multiple elemental substitutions at different sites. In addition, we successfully developed methods to synthesize alloy clusters with heterometal core. These findings are expected to lead to clear design guidelines for developing new functional nanomaterials.
This report describes the precise and systematic synthesis of PdAu24 clusters protected with two types of thiolate ligands (-SR1 and -SR2). It involved high-resolution separation of metal clusters containing a distribution of chemical compositions, PdAu24(SR1)18-n(SR2)n (n = 0, 1, 2, ..., 18), to individual clusters of specific n using high-performance liquid chromatography. Similar high-resolution separation was achieved for a few ligand combinations as well as clusters with other metal cores, such as Au25 and Au38. These results demonstrate the ability to precisely control the chemical composition of two types of ligands in thiolate-protected mono- and bimetallic metal clusters. It is expected that greater functional control of thiolate-protected metal clusters, their regular arrays, and systematic variation of their properties can now be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.