The biological properties of titanium depend on its surface oxide film. Several mechanical and chemical treatments have been used to modify the surface morphology and properties of titanium dental implants. One possible method of improving dental implant biocompatibility is to increase surface roughness and decrease the contact angle. In the present work, the biological properties of dental implants were investigated through in vivo and in vitro tests. The effects of surface roughness, contact angle and surface morphology on titanium dental implant removal torque were investigated. Machined dental implants and discs made with commercially pure titanium ASTM grade 4 were submitted to sandblasting treatments, acid etching and anodizing. The sample surface morphologies were characterized by SEM, the surface roughness parameters were quantified using a laser non-contact profilometer, and a contact angle measurement was taken. Dental implants were placed in the tibia of rabbits and removed 12 weeks after the surgery. It was found that: (i) acid etching homogenized the surface roughness parameters; (ii) the anodized surface presented the smallest contact angle; (iii) the in vivo test suggested that, in similar conditions, the surface treatment had a beneficial effect on the implant biocompatibility measured through removal torque; and (iv) the anodized dental implant presented the highest removal torque.
Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.