Signal transduction in rod cells begins with photon absorption by rhodopsin and leads to the generation of an electrical response. The response profile is determined by the molecular properties of the phototransduction components. To examine how the molecular properties of rhodopsin correlate with the rod-response profile, we have generated a knock-in mouse with rhodopsin replaced by its E122Q mutant, which exhibits properties different from those of wild-type (WT) rhodopsin. Knock-in mouse rods with E122Q rhodopsin exhibited a photosensitivity about 70% of WT. Correspondingly, their single-photon response had an amplitude about 80% of WT, and a rate of decline from peak about 1.3 times of WT. The overall 30% lower photosensitivity of mutant rods can be explained by a lower pigment photosensitivity (0.9) and the smaller single-photon response (0.8). The slower decline of the response, however, did not correlate with the 10-fold shorter lifetime of the meta-II state of E122Q rhodopsin. This shorter lifetime became evident in the recovery phase of rod cells only when arrestin was absent. Simulation analysis of the photoresponse profile indicated that the slower decline and the smaller amplitude of the single-photon response can both be explained by the shift in the meta-I/ meta-II equilibrium of E122Q rhodopsin toward meta-I. The difference in meta-III lifetime between WT and E122Q mutant became obvious in the recovery phase of the dark current after moderate photobleaching of rod cells. Thus, the present study clearly reveals how the molecular properties of rhodopsin affect the amplitude, shape, and kinetics of the rod response.Light absorption by rhodopsin in rod photoreceptor cells results in the activation of a G protein-mediated signal transduction cascade that eventually generates an electrical response (1). The key proteins in this cascade have been identified, and their molecular properties as well as interactions with each other have been extensively investigated (2, 3). A current question is how well these properties and interactions correlate with the response profile of the photoreceptor cells. Although the gene knock-out approach has been very useful in addressing this question for the proteins rhodopsin kinase and arrestin (4, 5), this strategy is less appropriate for rhodopsin and G protein, because the deletions of these proteins eliminated the light response (6, 7). The gene knock-in approach is an alternative way, with a mutant protein replacing the wild-type (WT) 8 version. The maintenance of the same expression level of the protein in this procedure is important, because the interpretation can be difficult otherwise. For example, the photoresponse profile is altered when the rhodopsin content in rods is halved (8, 9).Our past work on comparing rhodopsin and cone pigments (10) has shown that their photosensitivities are not so different, but the meta-II (the G protein-activating state), as well as the subsequent meta-III, intermediates of cone pigments exhibit faster decay than those of rhodopsi...
Immature retinal ganglion cells (RGCs) initially show a multistratified dendritic pattern, and, during the postnatal period, these dendrites gradually monostratify into ON and OFF sublaminae. The selective agonist of group III metabotropic glutamate receptors (mGluR), L-2-amino-4-phosphonobutyrate (L-AP-4), hyperpolarizes ON bipolar cells and reduces glutamate release. On the basis of L-AP-4-evoked inhibitory effects on ON-OFF segregation of developing RGCs, it has been hypothesized that glutamate-mediated synaptic activity is crucial for formation of the ON-OFF network. Gene-targeted ablation of mGluR6 specifically expressed in ON bipolar cells blocks normal ON responses but has been predicted to enhance glutamate release from ON bipolar cells. The mGluR6 knockout mouse therefore provides a unique opportunity to investigate whether glutamate release and ON responses are important factors in the development of ON-OFF segregation. The combination of several different morphological analyses indicates that ON bipolar cells, as well as several distinct amacrine cells, in mGluR6 knock-out mice are normally distributed and correctly extend their terminals to defined retinal laminae. Importantly, both ␣ and ␦ RGCs in adult mGluR6 knock-out mice are found monostratified into cell type-specific layers. Furthermore, no difference between wild-type and mGluR6 knock-out mice is observed in the maturation and dendritic stratification of developing RGCs. Hence, despite a deficit in normal ON responses, mGluR6 deficiency causes no abnormality in the retinal cellular organization nor in the stratifications of both ON bipolar cells and developing and mature RGCs. Based on these findings, we discuss several possible mechanisms that may underlie ON-OFF segregation of RGCs.
1. Horizontal cells of the cat retina were isolated by enzymatic dissociation. Two types of horizontal cells were identified: the axonless (A-type) horizontal cell having four to six thick, long (approximately 100 microns) dendrites, and the short-axon (B-type) horizontal cell having many (> 5) fine, short (approximately 30 microns) dendrites. 2. Membrane properties of isolated horizontal cells were analyzed under current-clamp and voltage-clamp conditions. In the A-type cell, the average resting potential was -55 mV and the mean membrane capacitance was 110 pF, whereas values in the B-type cell were -58 mV and 40 pF, respectively. The A-type cell showed long-lasting Ca spikes, but B-type cells had no Ca spikes. 3. Five types of voltage-dependent ionic currents were recorded: a sodium current (INa), a calcium current (ICa), and three types of potassium currents. Potassium currents consisted of potassium current through the inward rectifier (Ianomal), transient outward potassium current (IA), and potassium current through the delayed rectifier (IK(v)). INa was recorded only from A-type cells. Other currents were recorded from both types of cells. 4. INa activated when cells were depolarized from a holding potential (Vh) of -95 mV, and it was maximal at -25 mV. This current was blocked by tetrodotoxin. Approximately half of the A-type cells had INa, but no B-type cell had this current. 5. L-type ICa, an inward-going sustained current, was activated with depolarization more positive than -25 mV. Current amplitude reached a maximal value near 15 mV and became smaller with further depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)
Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in mice in which rod visual pigment (rhodopsin) was replaced with mouse green-sensitive cone visual pigment (mouse green). The mouse green was successfully transported to the rod outer segments, though the expression of mouse green in homozygous retina was ∼11% of rhodopsin in wild-type retina. Single-cell recordings of wild-type and homozygous rods suggested that the flash sensitivity and the single-photon responses from mouse green were three to fourfold lower than those from rhodopsin after correction for the differences in cell volume and levels of several signal transduction proteins. Subsequent measurements using heterozygous rods expressing both mouse green and rhodopsin E122Q mutant, where these pigments in the same rod cells can be selectively irradiated due to their distinctive absorption maxima, clearly showed that the photoresponse of mouse green was threefold lower than that of rhodopsin. Noise analysis indicated that the rate of thermal activations of mouse green was 1.7 × 10−7 s−1, about 860-fold higher than that of rhodopsin. The increase in thermal activation of mouse green relative to that of rhodopsin results in only 4% reduction of rod photosensitivity for bright lights, but would instead be expected to severely affect the visual threshold under dim-light conditions. Therefore, the abilities of rhodopsin to generate a large single photon response and to retain high thermal stability in darkness are factors that have been necessary for the evolution of scotopic vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.