Breast cancer almost invariably metastasizes to bone in patients with advanced disease and causes local osteolysis. Much of the morbidity of advanced breast cancer is a consequence of this process. Despite the importance of the problem, little is known of the pathophysiology of local osteolysis in the skeleton or its prevention and treatment. Observations in patients with bone metastases suggest that breast cancer cells in bone express parathyroid hormone-related protein (PTHrP) more frequently than in soft tissue sites of metastasis or in the primary tumor. Thus, the role of PTHrP in the causation of breast cancer metastases in bone was examined using human breast cancer cell lines.
Matrix extracellular phosphoglycoprotein (MEPE) is expressed exclusively in osteoblasts, osteocytes and odontoblasts with markedly elevated expression found in X-linked hypophosphatemic rickets (Hyp) osteoblasts and in oncogenic hypophosphatemic osteomalacia (OHO) tumors. Because these syndromes are associated with abnormalities in mineralization and renal phosphate excretion, we examined the effects of insect-expressed full-length human-MEPE (Hu-MEPE) on serum and urinary phosphate in vivo, 33 PO 4 uptake in renal proximal tubule cultures and mineralization of osteoblast cultures. Dose-dependent hypophosphatemia and hyperphosphaturia occurred in mice following intraperitoneal (IP) administration of Hu-MEPE (up to 400 μg kg -1 31 h -1 ), similar to mice given the phosphaturic hormone PTH (80 μg kg -1 31 h -1 ). Also the fractional excretion of phosphate (FEP) was stimulated by MEPE [65.0% (P < 0.001)] and PTH groups [53.3% (P < 0.001)] relative to the vehicle group [28.7% (SEM 3.97)]. In addition, Hu-MEPE significantly inhibited 33 PO 4 uptake in primary human proximal tubule renal cells (RPTEC) and a human renal cell line (Hu-CL8) in vitro (V max 53.4% inhibition; K m 27.4 ng/ ml, and V max 9.1% inhibition; K m 23.8 ng/ml, respectively). Moreover, Hu-MEPE dose dependently (50-800 ng/ml) inhibited BMP2-mediated mineralization of a murine osteoblast cell line (2T3) in vitro. Inhibition of mineralization was localized to a small (2 kDa) cathepsin B released carboxy-terminal MEPE peptide (protease-resistant) containing the acidic serineaspartate-rich motif (ASARM peptide). We conclude that MEPE promotes renal phosphate excretion and modulates mineralization.
Matrix extracellular phosphoglycoprotein (MEPE) is a SIBLING protein, found in bone and dental tissues. The purpose of this study was to determine whether a 23-amino-acid peptide derived from MEPE (Dentonin or AC-100) could stimulate dental pulp stem cell (DPSC) proliferation and/or differentiation. DPSCs were isolated from erupted human molars, and the mitogenic potential of Dentonin in DPSCs was measured by BrdU immunoassay and cell-cycle gene SuperArray. Differentiation of DPSCs with Dentonin was characterized by Western blot and by osteogenesis gene SuperArray. Dentonin enhanced DPSC proliferation by down-regulating P16, accompanied by up-regulation of ubiquitin protein ligase E3A and human ubiquitin-related protein SUMO-1. Enhanced cell proliferation required intact RGD and SGDG motifs in the peptide. This study shows that Dentonin can promote DPSC proliferation, with a potential role in pulp repair. Further studies are required to determine the usefulness of this material in vivo.
Matrix extracellular phosphoglycoprotein (MEPE) was proposed as a candidate for the phosphaturic hormone phosphatonin. We found that a synthetic peptide fragment of MEPE containing the RGD and SGDG sequence stimulated new bone formation in vitro and in vivo.Introduction: Matrix extracellular phosphoglycoprotein (MEPE) was recently identified as a candidate for the phosphaturic hormone phosphatonin, which has been implicated in disturbed phosphate metabolism, rickets, and osteomalacia associated with X-linked hypophosphatemic rickets (XLH) and oncogenic hypophosphatemic osteomalacia (OHO). MEPE expression was predominantly found in osteoblasts, and mice deficient in a homolog of MEPE showed increased bone density, suggesting that MEPE produced in osteoblasts negatively regulates bone formation. In this study, we examined the effects of a synthetic 23mer peptide fragment of MEPE (AC-100, region 242-264) containing the RGD (integrinbinding) and SGDG (glycosaminoglycan-attachment) motif on bone formation in vitro and in vivo. Materials and Methods:The osteogenic activity of AC-100 was examined in organ cultures of neonatal mouse calvariae and in vivo by injecting AC-100 onto the calvariae of mice. Results: Histomorphometric examination showed that AC-100 stimulated new bone formation with increased numbers of osteoblasts in neonatal mouse calvariae in organ culture. In contrast, synthetic MEPE fragment peptides without either the RGD or SGDG motif failed to increase new bone formation. Repeated daily subcutaneous injections of AC-100 onto the calvariae in mice increased bone thickness and stimulated new bone formation as determined by the calcein doublelabeling technique. However, peptides in which the RGD or SGDG sequence was scrambled did not stimulate new bone formation in vivo. AC-100 increased cell proliferation and alkaline phosphatase activity and activated focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) in human primary osteoblasts. Conclusion: Our results show that a synthetic peptide corresponding with the sequence of human MEPE fragment stimulates new bone formation with increased number of osteoblasts. The results also suggest that the RGD and SGDG motifs are critical to the osteogenic activity of AC-100, presumably through activating integrin signaling pathways in osteoblasts. The anabolic effects of AC-100 may be beneficial for bone diseases associated with decreased bone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.