We present a case of a 62-year-old man who underwent total hip arthroplasty for treatment of pathologic femoral neck fracture associated with adefovir dipivoxil-induced osteomalacia. He had a 13-month history of bone pain involving his shoulders, hips, and knee. He received adefovir dipivoxil for treatment of lamivudine-resistant hepatitis B virus infection for 5 years before the occurrence of femoral neck fracture. Orthopedic surgeons should be aware of osteomalacia and pathological hip fracture caused by drug-induced renal dysfunction, which results in Fanconi’s syndrome.Virtual slidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1600344696739249
High-dose chemotherapy and surgical treatment have improved the prognosis of osteosarcoma. However, more than 20% of patients with osteosarcoma still have a poor prognosis. We investigated the expression and function of casein kinase 2 (CK2) in osteosarcoma growth. We then examined the effects of CX-4945, a CK2 inhibitor, on osteosarcoma growth in vitro and in vivo to apply our findings to the clinical setting. We examined the expression of CK2α and CK2β by western blot analysis, and performed WST-1 assays using CK2α and CK2β siRNA or CX-4945. Flow cytometry and western blot analyses were performed to evaluate apoptotic cell death. Xenograft models were used to examine the effect of CX-4945 in vivo. Western blot analysis revealed upregulation of CK2α and CK2β in human osteosarcoma cell lines compared with human osteoblast cells or mesenchymal stem cells. WST assay showed that knockdown of CK2α or CK2β by siRNA inhibited the proliferation of human osteosarcoma cells. Treatment with 3 µM of CX-4945 inhibited osteosarcoma cell proliferation; however, the same concentration of CX-4945 did not affect the proliferation of human mesenchymal stem cells. Additionally, treatment with CX-4945 inhibited the proliferation of human osteosarcoma cells in a dose-dependent manner. Western blot and flow cytometry analyses showed that treatment with CX-4945 promoted apoptotic death of osteosarcoma cells. The xenograft model showed that treatment with CX-4945 significantly prevented osteosarcoma growth in vivo compared with control vehicle treatment. Our findings indicate that CK2 may be an attractive therapeutic target for treating osteosarcoma.
The treatment of glioblastoma is a critical health issue, owing to its resistance to chemotherapy. The current standard of treatment is surgical resection, followed by adjuvant radiotherapy and temozolomide treatment. Long-term local treatment of glioblastoma is rarely achieved and the majority of the patients undergo relapse. Resistance to temozolomide emerges from numerous signalling pathways that are altered in glioblastoma, including the Hedgehog signalling pathway. Hence, further research is required to identify effective treatment modalities. We investigated the effect of vismodegib, arsenic trioxide and temozolomide on glioblastoma in vitro and in vivo to apply our findings to the clinical setting. WST-1 assay revealed that glioblastoma proliferation was inhibited following treatment with these drugs either in single or in combination; this synergistic effect was confirmed by CalcuSyn software. Western blot analysis revealed an increase in the expression of cleaved caspase-3 and γH2AX. Furthermore, there was marked inhibition and decreased tumour growth in mice that received combination therapy, unlike those that received single agent or vehicle treatment. Our results revealed that the combination of arsenic trioxide/vismodegib and temozolomide may be an attractive therapeutic method for the treatment of glioblastoma.
High-dose chemotherapy and surgical intervention have improved long-term prognosis for non-metastatic osteosarcoma to 50-80%. However, metastatic osteosarcoma exhibits resistance to standard chemotherapy. We and others have investigated the function of Hedgehog pathway in osteosarcoma. To apply our previous findings in clinical settings, we examined the effects of Hedgehog inhibitors including arsenic trioxide (ATO) and vismodegib combined with standard anticancer agents. We performed WST-1 assays using ATO, cisplatin (CDDP), ifosfamide (IFO), doxorubicin (DOX), and vismodegib. Combination-index (CI) was used to examine synergism using CalcuSyn software. Xenograft models were used to examine the synergism in vivo. WST-1 assays showed that 143B and Saos2 cell proliferation was inhibited by ATO combined with CDDP, IFO, DOX, and vismodegib. Combination of ATO and CDDP, IFO, DOX or vismodegib was synergistic when the two compounds were used on proliferating 143B and Saos2 human osteosarcoma cells. An osteosarcoma xenograft model showed that treatment with ATO and CDDP, IFO, or vismodegib significantly prevented osteosarcoma growth in vivo compared with vehicle treatment. Our findings indicate that combination of Hedgehog pathway inhibitors and standard FDA-approved anticancer agents with established safety for human use may be an attractive therapeutic method for treating osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.