Epidermal growth factor (EGF) receptor (EGFR) signalling is implicated in tumour invasion and metastasis. However, whether there are EGFR signalling pathways specifically used for tumour invasion still remains elusive. Overexpression of Arf6 and its effector, AMAP1, correlates with and is crucial for the invasive phenotypes of different breast cancer cells. Here we identify the mechanism by which Arf6 is activated to induce tumour invasion. We found that GEP100/BRAG2, a guanine nucleotide exchanging factor (GEF) for Arf6, is responsible for the invasive activity of MDA-MB-231 breast cancer cells, whereas the other ArfGEFs are not. GEP100, through its pleckstrin homology domain, bound directly to Tyr1068/1086-phosphorylated EGFR to activate Arf6. Overexpression of GEP100, together with Arf6, caused non-invasive MCF7 cells to become invasive, which was dependent on EGF stimulation. Moreover, GEP100 knockdown blocked tumour metastasis. GEP100 was expressed in 70% of primary breast ductal carcinomas, and was preferentially co-expressed with EGFR in the malignant cases. Our results indicate that GEP100 links EGFR signalling to Arf6 activation to induce invasive activities of some breast cancer cells, and hence may contribute to their metastasis and malignancy.
Hepatocellular carcinoma (HCC) is a typical hypervascular tumor. However, the relationship between the vascularity of HCC and the expression of angiogenic factors has not been investigated. In addition, no detailed studies have examined the possible involvement of angiogenic factors in the grade of malignancy of HCC. The aim of this study was to determine which angiogenic factors regulate tumor angiogenesis and contribute to the invasive ability of liver tumors, especially of HCC. Northern blot analysis was used to examine the transcriptional expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and acidic FGF in resected surgical specimens (20 HCC and 9 metastatic liver tumors). Correlations between messenger RNA (mRNA) expression and arteriographic findings, as well as histopathological findings, were evaluated. Immunohistochemistry was performed to identify the localization of cells expressing VEGF in HCC. Higher levels of VEGF mRNA were observed in 12 of 20 HCC and 2 of 9 metastatic liver tumors than in corresponding nontumorous tissues. The degree of VEGF mRNA expression was significantly correlated with the intensity of tumor staining in angiograms (P<.01). On immunohistochemical observation, VEGF protein was intensely detected in HCC cells. Furthermore, basic FGF mRNA was detected in 9 of 20 HCC and was related to the capsular infiltration of cancer cells (P<.05). In contrast, no significant difference was observed in the very low levels of acidic FGF mRNA found in the tumorous and nontumorous portions of the liver. In conclusion, these results suggest that VEGF contributes to angiogenesis of liver tumors, whereas basic FGF may be involved in the invasion of HCC into the surrounding tissues.
During tumor development, cells acquire multiple phenotypic changes upon misregulation of oncoproteins and tumor suppressor proteins. Hakai was originally identified as an E3 ubiquitin-ligase for the E-cadherin complex that regulates cell-cell contacts. Here, we present evidence that Hakai plays a crucial role in various cellular processes and tumorigenesis. Overexpression of Hakai affects not only cell-cell contacts but also proliferation in both epithelial and fibroblast cells. Furthermore, the knockdown of Hakai significantly suppresses proliferation of transformed epithelial cells. Expression of Hakai is correlated to the proliferation rate in human tissues and is highly up-regulated in human colon and gastric adenocarcinomas. Moreover, we identify PTB-associated splicing factor (PSF), an RNA-binding protein, as a novel Hakai-interacting protein. By using cDNA arrays, we have determined various specific PSF-associated mRNAs encoding proteins that are involved in several cancer-related processes. Hakai affects the ability of PSF to bind these mRNAs, and expression of PSF short hairpin RNA or a dominant-negative PSF mutant significantly suppresses proliferation of Hakai-overexpressing cells. Collectively, these results suggest that Hakai is an important regulator of cell proliferation and that Hakai may be an oncoprotein and a potential molecular target for cancer treatment.
Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa.
More effective therapeutic approaches for castration-resistant prostate cancer (CRPC) are urgently needed, thus reinforcing the need to understand how prostate tumors progress to castration resistance. We have established a novel mouse xenograft model of prostate cancer, KUCaP-2, which expresses the wild-type androgen receptor (AR) and which produces the prostate-specific antigen (PSA). In this model, tumors regress soon after castration, but then reproducibly restore their ability to proliferate after 1 to 2 months without AR mutation, mimicking the clinical behavior of CRPC. In the present study, we used this model to identify novel therapeutic targets for CRPC. Evaluating tumor tissues at various stages by gene expression profiling, we discovered that the prostaglandin E receptor EP4 subtype (EP4) was significantly upregulated during progression to castration resistance. Immunohistochemical results of human prostate cancer tissues confirmed that EP4 expression was higher in CRPC compared with hormone-naïve prostate cancer. Ectopic overexpression of EP4 in LNCaP cells (LNCaP-EP4 cells) drove proliferation and PSA production in the absence of androgen supplementation in vitro and in vivo. Androgen-independent proliferation of LNCaP-EP4 cells was suppressed when AR expression was attenuated by RNA interference. Treatment of LNCaP-EP4 cells with a specific EP4 antagonist, ONO-AE3-208, decreased intracellular cyclic AMP levels, suppressed PSA production in vitro, and inhibited castration-resistant growth of LNCaP-EP4 or KUCaP-2 tumors in vivo. Our findings reveal that EP4 overexpression, via AR activation, supports an important mechanism for castration-resistant progression of prostate cancer. Furthermore, they prompt further evaluation of EP4 antagonists as a novel therapeutic modality to treat CRPC. Cancer Res; 70(4); 1606-15. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.