It is widely believed that coming into contact with forest environments is somehow beneficial to human well-being and comfort. In Japan, "Shinrin-yoku" (taking in the atmosphere of a forest) has been proposed to be a relaxation activity associated with forest recreation. The purpose of this study was to examine the physiological effects of forest recreation on the autonomic nervous activity. The subjects were twelve male university students (21.8 ± 0.8 years old). On the first day of the experiment, six subjects were sent to a forest area, and the other six to a city area. On the second day, each subject was sent to the area he did not visit on the first day as a cross check. The subjects walked (15 minutes) around their assigned areas before noon, and sat on chairs viewing (15 minutes) the landscapes of their assigned areas in the afternoon. Heart rate variability (HRV), blood pressure, and pulse rate were measured as physiological indices. Measurements were taken at the place of accommodation in the morning, before and after walking, and before and after viewing at their assigned field areas. Pulse rate, diastolic blood pressure and LF/(LF+HF) (LF-low frequency, HF-high frequency) components of HRV were significantly lower in the forest area than in the city area. HF components of HRV tended to be higher in the forest than in the city. In conclusion, the results of the physiological measurements show that forest recreation enabled effective relaxation in people, both of the mind and body.
The electrochemically stable and relatively high conductive room temperature molten salts (RTMS) have been obtained with the use of small ammonium cations such as methoxymethyltrimethylammonium and bis(trifluoromethylsulfonyl)imide. The RTMS showed high conductivity (4.7 mS cm−1 at 25 °C) which is the highest value of all the ammonium based RTMS reported so far.
The asymmetric amide anion (CF3SO2-N(-)-COCF3) has excellent abilities to lower both the melting points and viscosities of room temperature ionic liquids (RTILs) combining with small aliphatic ammonium cations that have not yet been reported to form RTILs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.