SummaryThe dominant locus, RCY1, in the Arabidopsis thaliana ecotype C24 confers resistance to the yellow strain of cucumber mosaic virus (CMV-Y). The RCY1 locus was mapped to a 150-kb region on chromosome 5. Sequence comparison of this region from C24 and a CMV-Y-susceptible C24 mutant predicts that the RCY1 gene encodes a 104-kDa CC-NBS-LRR-type protein. The RCY1 gene from C24, when expressed in the susceptible ecotype Wassilewskija (Ws), restricted the systemic spread of virus. RCY1 is allelic to the resistance genes RPP8 from the ecotype Landsberg erecta and HRT from the ecotype Dijon-17, which confer resistance to Peronospora parasitica biotype Emco5 and turnip crinkle virus (TCV), respectively. Examination of RCY1 plants defective in salicylic acid (SA), jasmonic acid (JA) and ethylene signaling revealed a requirement for SA and ethylene signaling in mounting a resistance response to CMV-Y. The RCY1 nahG etr1 double mutants exhibited an intermediate level of susceptibility to CMV-Y, compared to the resistant ecotype C24 and the susceptible ecotypes Columbia and Nossen. This suggests that in addition to SA and ethylene, a novel signaling mechanism is associated with the induction of resistance in CMV-Y-infected C24 plants. Moreover, our results suggest that the signaling pathways downstream of the RPP8, HRT, and RCY1 have evolved independently.
The responses of 12 Arabidopsis ecotypes to cucumber mosaic virus strain Y (CMV(Y)) or strain O (CMV(O)) were characterized. Except for ecotype C24, all ecotypes were susceptible to both strains of CMV. In C24, CMV(O) multiplied systemically, but CMV(Y) did not spread systemically and induced only local necrotic spots in virus‐inoculated leaves 21–27 h after inoculation. In CMV(Y)‐inoculated C24 leaves, virus was confined to the inoculated leaves, and the amount of the pathogenesis‐related‐1 protein increased during the progress of local necrotic spot formation. These results indicate that C24 mounts a hypersensitive response (HR) to CMV(Y). By genetic analysis of crosses between C24 and ecotype Columbia or Landsberg (erecta) which are susceptible to CMV(Y) infection, the HR to CMV(Y) in C24 was found to be determined by a single major dominant gene whose function was influenced by a modifier gene from the Landsberg ecotype. Comparison of the responses between C24 leaves inoculated with pseudorecombinants of both strains of CMV suggested that the HR was controlled by CMV RNA3. The molecular interaction between the single major gene and CMV(Y) RNA3 is likely to induce the HR in CMV(Y)‐inoculated C24.
A yellow strain of cucumber mosaic virus (CMV) [CMV(Y)] induces a resistance response characterized by inhibition of virus systemic movement with development of necrotic local lesions in the virus-inoculated leaves of Arabidopsis thaliana ecotype C24. In this report, the avirulence determinant in the virus genome was defined and the resistance gene (RCY1) of C24 was genetically mapped. The response of C24 to CMV containing the chimeric RNA3 between CMV(Y) and a virulent strain of CMV indicated that the coat protein gene of CMV(Y) determined the localization of the virus in the inoculated leaves of C24. The RCY1 locus was mapped between two CAPS markers, DFR and T43968, which were located in the region containing genetically defined disease resistance genes and their homologues. These results indicate that the resistance response to CMV(Y) in C24 is determined by the combination of the coat protein gene and RCY1 on chromosome 5.
To elucidate the molecular basis of symptom expression in virus-infected plants, the changes in proteins between tobacco, Nicotiana tabacum cv. Ky57, leaves inoculated with cucumber mosaic virus strain Y [CMV(Y)] and strain O [CMV(O)], were compared by 2-dimensional (2-D) gel electrophoresis. The appearance of chlorotic spots in CMV(Y)-inoculated tobacco leaves accompanied an increase of 3 polypeptides and a decrease in 6 polypeptides, as compared with those in the CMV(O)-inoculated tobacco which showed no clear symptoms. The decrease in the amounts of two polypeptides of 22 and 23 kDa was particularly significant: these two polypeptides were compared with a 24 kDa polypeptide, which co-migrated with them in 2-D gel electrophoresis but did not clearly decrease at an early stage of infection, as well as major other proteins of CMV(Y)-inoculated tobacco leaves. However, the 22, 23 and 24 kDa polypeptides showed the same peptide mapping pattern. Furthermore, the 12 amino acid residues at N-termini of the three polypeptides match those of the extrinsic 23 kDa polypeptide of an oxygen-evolving complex from spinach. A comparative analysis of the 22, 23 and 24 kDa polypeptides in N. tabacum and its ancestral parents, N. sylvestris and N. tomentosiformis, revealed that the 22 kDa polypeptide derives from N. sylvestris and the 23 kDa polypeptide from N. tomentosiformis; the 24 kDa polypeptide derives from both ancestral Nicotiana species. The results indicate that the polypeptides whose amounts differentially decrease with the progress of symptom expression in N. tabacum inoculated with CMV(Y) are one component of the oxygen-evolving complex in photosystem II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.