During the course of a systematic screening of peptide signaling molecules in Hydra a novel peptide, Hym-355 (FPQSFLPRG-NH2), was identified. A cDNA encoding the peptide was isolated and characterized. Using both in situ hybridization and immunohistochemistry, Hym-355 was shown to be expressed in neurons and hence is a neuropeptide. The peptide was shown to specifically enhance neuron differentiation throughout the animal by inducing interstitial cells to enter the neuron pathway.Further, co-treatment with a PW peptide, which inhibits neuron differentiation, nullified the effects of both peptides, suggesting that they act in an antagonistic manner. This effect is discussed in terms of a feedback mechanism for maintaining the steady state neuron population in Hydra.
NGIWYamide is a peptide recently isolated from the sea cucumber Apostichopus japonicus. It sti¡ens the connective tissue of the holothurian body wall. Localization of NGIWYamide was investigated by immunohistochemical staining with antiserum raised against NGIWYamide. In holothurian nervous systems NGIWYamide-like immunoreactivity (NGIWYa-LI) was observed in the hyponeural and ectoneural regions of the radial nerve cord, as well as in the circumoral nerve ring, podial nerves, tentacular nerves, the basiepithelial nerve plexus of the intestine and in cellular processes running through the body wall dermis. Labelled nerve ¢bres from the hyponeural part of the radial nerve running towards the circular muscle and from the podial nerve into the body wall dermis suggest that NGIWYamide controls both muscle and connective tissue. We examined the e¡ect on muscle activity of the sea cucumber. NGIWYamide (10 77 to 10 74 M) caused contraction of the longitudinal body wall muscle. Tentacles showed contraction only at a higher dose (10 74 M). NGIWYamide (10 74 M) inhibited spontaneous contraction of the intestine.
Sleep behaviors are observed even in nematodes and arthropods, yet little is known about how sleep-regulatory mechanisms have emerged during evolution. Here, we report a sleep-like state in the cnidarian Hydra vulgaris with a primitive nervous organization. Hydra sleep was shaped by homeostasis and necessary for cell proliferation, but it lacked free-running circadian rhythms. Instead, we detected 4-hour rhythms that might be generated by ultradian oscillators underlying Hydra sleep. Microarray analysis in sleep-deprived Hydra revealed sleep-dependent expression of 212 genes, including cGMP-dependent protein kinase 1 (PRKG1) and ornithine aminotransferase. Sleep-promoting effects of melatonin, GABA, and PRKG1 were conserved in Hydra. However, arousing dopamine unexpectedly induced Hydra sleep. Opposing effects of ornithine metabolism on sleep were also evident between Hydra and Drosophila, suggesting the evolutionary switch of their sleep-regulatory functions. Thus, sleep-relevant physiology and sleep-regulatory components may have already been acquired at molecular levels in a brain-less metazoan phylum and reprogrammed accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.