Abstract. Near the Japan Trench convergent plate margin the seaward edge of the continental plate is deformed by subduction of the oceanic plate. We report the results of a multichannel seismic survey in the northern Japan Trench in which this deformed zone is demarcated from the rigid continental framework by a pronounced landward dipping reflector. The oceanic plate also undergoes deformation as the two plates interact in the subduction processes, resulting in a progressive deformation or destruction of a horst structure along the top of the subducting oceanic crust. This may eventually lead to the formation of a smooth plate boundary at the greater depth. More than 45 km landward from the trench axis, a smooth reflector suggesting a stable slip plane is visible along and above the oceanic crust. Our data indicate that the deformed zone pinches out landward --•60 km from the axis at 13 km depth and the slip plane becomes less obvious there. Seismicity of interplate earthquakes rapidly increases landward from this location, leading us to speculate that this is where coupling at the plate boundary becomes strong enough for earthquakes to occur. We conclude that the updip limit of the seismogenic zone of interplate earthquakes in the study area is characterized by the tectonic feature of a pinchout of the deformed sediments which overlie the subducting oceanic crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.