Although a conditionally replicating adenovirus (CRA) exhibiting cancer-selective replication and induction of cell death is an innovative potential anticancer agent, current imperfections in cancer specificity and efficient viral replication limit the usefulness of this technique. Here, we constructed survivin-responsive CRAs (Surv.CRAs), in which expression of the wild-type or mutant adenoviral early region 1A (E1A) gene is regulated by the promoter of survivin, a new member of the inhibitor of apoptosis gene family. We explored the cancer specificity and effectiveness of viral replication of Surv.CRAs, evaluating their potential as a treatment for cancer. The survivin promoter was strongly activated in all cancers examined at levels similar to or even higher than those seen for representative strong promoters; in contrast, low activity was observed in normal cells. Surv.CRAs efficiently replicated and potently induced cell death in most types of cancer. In contrast, minimal viral replication in normal cells did not induce any detectable cytotoxicity. A single injection of Surv.CRAs into a preestablished tumor expressing survivin, even at relatively low levels, induced significant tumor death and inhibition of tumor growth. Furthermore, Surv.CRAs were superior to telomerasedependent CRAs, one of the most effective CRAs that have been examined to date, both in terms of cancer specificity and efficiency. Thus, Surv.CRAs are an attractive potential anticancer agent that could effectively and specifically treat a variety of cancers. (Cancer Res 2005; 65(12): 5284-91)
Insulin-like growth factor (IGF), hepatocyte growth factor (HGF), and heparin-binding epidermal growth factorlike growth factor (HB-EGF) are cardiogenic and cardiohypertrophic growth factors. Although the therapeutic effects of IGF and HGF have been well demonstrated in injured hearts, it is uncertain whether natural upregulation of HB-EGF after myocardial infarction (MI) plays a beneficial or pathological role in the process of remodeling. To answer this question, we conducted adenoviral HB-EGF gene transduction in in vitro and in vivo injured heart models, allowing us to highlight and explore the HB-EGF-induced phenotypes. Overexpressed HB-EGF had no cytoprotective or additive death-inducible effect on Fas-induced apoptosis or oxidative stress injury in primary cultured mouse cardiomyocytes, although it significantly induced hypertrophy of cardiomyocytes and proliferation of cardiac fibroblasts. Locally overexpressed HB-EGF in the MI border area in rabbit hearts did not improve cardiac function or exhibit an angiogenic effect, and instead exacerbated remodeling at the subacute and chronic stages post-MI. Namely, it elevated the levels of apoptosis, fibrosis, and the accumulation of myofibroblasts and macrophages in the MI area, in addition to inducing left ventricular hypertrophy. Thus, upregulated HB-EGF plays a pathophysiological role in injured hearts in contrast to the therapeutic roles of IGF and HGF. These results imply that regulation of HB-EGF may be a therapeutic target for treating cardiac hypertrophy and fibrosis. Laboratory Investigation (2005) 85, 862-873.
Abstract. Based on the finding that telomerase is reactivated solely in cancer cells, the human telomerase reverse transcriptase (hTERT) promoter has recently been used to target cancer cells by gene therapy. The recent, surprising observation that telomerase is physiologically activated even in normal somatic cells during S-phase has raised concerns as to the safety of this methodology. To clarify this issue, the present study carefully examined the changes in endogenous telomerase activities, hTERT mRNA expression, and hTERT promoter-based transgene expression in normal and cancer cells at synchronized phases of the cell cycle. Telomerase activity and hTERT expression were detected at variable, but relatively high, levels in all 12 cancer cell lines, while both were undetectable in the 11 normal cell lines. In HepG2 cancer cells, the highest levels of hTERT expression and telomerase activity, seen in the G 1 /S-and S-phases, were 2-3-fold higher than the lowest levels of both, observed in G 0 -phase and during asynchronization. No hTERT expression or telomerase activitiy could be detected in normal WI-38 fibroblasts at any phase of the cell cycle, including S-phase. Consequently, activity of the shorter hTERT promoter, which was transferred into HepG2 cancer cells via adenovirus transduction, was stronger than that of the longer hTERT promoter at all phases and that of two representatives of ubiquitously strong promoters, at both S-phase and asynchronization, but not at G 0 -phase. In contrast, neither of hTERT promoters induced detectable transgene expressions in normal WI-38 cells at any cell cycle phase, including S-phase. These results, particularly the lack of problematic levels of S-phase-specific activation of hTERT promoters in normal cells, have promising implications for hTERT promoter-based targeted gene therapy of cancer. IntroductionTelomeres are the distal ends of human chromosomes composed of tandem repeats of the sequence TTAGGG. These sites may function to stabilize chromosomal ends and prevent chromosome degradation, end-to-end fusion, rearrangement, and loss (1-4). Telomeres in somatic cells undergo progressive shortening with each successive cell division; it has been hypothesized that the reduction in telomere length may function as an intrinsic clock involved in the onset of cellular senescence (1,2,5). In immortal cells, telomeres are resynthesized and maintained by telomerase, a specialized DNA polymerase responsible for replication of chromosomal ends (6,7). Human telomerase reverse transcriptase (hTERT), the catalytic subunit of human telomerase, is the major determinant of telomerase activity; ectopic expression of hTERT is sufficient to reconstitute telomerase activity in telomerase-negative cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.