Table of contentsP001 - Sepsis impairs the capillary response within hypoxic capillaries and decreases erythrocyte oxygen-dependent ATP effluxR. M. Bateman, M. D. Sharpe, J. E. Jagger, C. G. EllisP002 - Lower serum immunoglobulin G2 level does not predispose to severe flu.J. Solé-Violán, M. López-Rodríguez, E. Herrera-Ramos, J. Ruíz-Hernández, L. Borderías, J. Horcajada, N. González-Quevedo, O. Rajas, M. Briones, F. Rodríguez de Castro, C. Rodríguez GallegoP003 - Brain protective effects of intravenous immunoglobulin through inhibition of complement activation and apoptosis in a rat model of sepsisF. Esen, G. Orhun, P. Ergin Ozcan, E. Senturk, C. Ugur Yilmaz, N. Orhan, N. Arican, M. Kaya, M. Kucukerden, M. Giris, U. Akcan, S. Bilgic Gazioglu, E. TuzunP004 - Adenosine a1 receptor dysfunction is associated with leukopenia: A possible mechanism for sepsis-induced leukopeniaR. Riff, O. Naamani, A. DouvdevaniP005 - Analysis of neutrophil by hyper spectral imaging - A preliminary reportR. Takegawa, H. Yoshida, T. Hirose, N. Yamamoto, H. Hagiya, M. Ojima, Y. Akeda, O. Tasaki, K. Tomono, T. ShimazuP006 - Chemiluminescent intensity assessed by eaa predicts the incidence of postoperative infectious complications following gastrointestinal surgeryS. Ono, T. Kubo, S. Suda, T. Ueno, T. IkedaP007 - Serial change of c1 inhibitor in patients with sepsis – A prospective observational studyT. Hirose, H. Ogura, H. Takahashi, M. Ojima, J. Kang, Y. Nakamura, T. Kojima, T. ShimazuP008 - Comparison of bacteremia and sepsis on sepsis related biomarkersT. Ikeda, S. Suda, Y. Izutani, T. Ueno, S. OnoP009 - The changes of procalcitonin levels in critical patients with abdominal septic shock during blood purificationT. Taniguchi, M. OP010 - Validation of a new sensitive point of care device for rapid measurement of procalcitoninC. Dinter, J. Lotz, B. Eilers, C. Wissmann, R. LottP011 - Infection biomarkers in primary care patients with acute respiratory tract infections – Comparison of procalcitonin and C-reactive proteinM. M. Meili, P. S. SchuetzP012 - Do we need a lower procalcitonin cut off?H. Hawa, M. Sharshir, M. Aburageila, N. SalahuddinP013 - The predictive role of C-reactive protein and procalcitonin biomarkers in central nervous system infections with extensively drug resistant bacteriaV. Chantziara, S. Georgiou, A. Tsimogianni, P. Alexandropoulos, A. Vassi, F. Lagiou, M. Valta, G. Micha, E. Chinou, G. MichaloudisP014 - Changes in endotoxin activity assay and procalcitonin levels after direct hemoperfusion with polymyxin-b immobilized fiberA. Kodaira, T. Ikeda, S. Ono, T. Ueno, S. Suda, Y. Izutani, H. ImaizumiP015 - Diagnostic usefullness of combination biomarkers on ICU admissionM. V. De la Torre-Prados, A. Garcia-De la Torre, A. Enguix-Armada, A. Puerto-Morlan, V. Perez-Valero, A. Garcia-AlcantaraP016 - Platelet function analysis utilising the PFA-100 does not predict infection, bacteraemia, sepsis or outcome in critically ill patientsN. Bolton, J. Dudziak, S. Bonney, A. Tridente, P. NeeP017 - Extracellular histone H3 levels are in...
BackgroundAugmented renal clearance (ARC) of circulating solutes and drugs has been recently often reported in intensive care unit (ICU) patients. However, only few studies on ARC have been reported in Japan. The aims of this pilot study were to determine the prevalence and risk factors for ARC in Japanese ICU patients with normal serum creatinine levels and to evaluate the association between ARC and estimated glomerular filtration rate (eGFR) calculated using the Japanese equation.MethodsWe conducted a prospective observational study from May 2015 to April 2016 at the emergency ICU of a tertiary university hospital; 111 patients were enrolled (mean age, 67 years; interquartile range, 53–77 years). We measured 8-h creatinine clearance (CLCR) within 24 h after admission, and ARC was defined as body surface area-adjusted CLCR ≥ 130 mL/min/1.73 m2. Multiple logistic regression analysis was performed to identify the risk factors for ARC. Moreover, a receiver operating curve (ROC) analysis, including area under the receiver operating curve (AUROC) was performed to examine eGFR accuracy and other significant variables in predicting ARC.ResultsIn total, 43 patients (38.7 %) manifested ARC. Multiple logistic regression analysis was performed for age, body weight, body height, history of diabetes mellitus, Acute Physiology and Chronic Health Evaluation II scores, admission categories of post-operative patients without sepsis and trauma, and serum albumin, and only age was identified as an independent risk factor for ARC (odds ratio, 0.95; 95 % confidence interval [CI], 0.91–0.98). Moreover, the AUROC of ARC for age and eGFR was 0.81 (95 % CI, 0.72–0.89) and 0.81 (95 % CI, 0.73–0.89), respectively. The optimal cutoff values for detecting ARC were age and eGFR of ≤63 years (sensitivity, 72.1 %; specificity, 82.4 %) and ≥76 mL/min/1.73 m2 (sensitivity, 81.4 %; specificity, 72.1 %), respectively.ConclusionsARC is common in Japanese ICU patients, and age was an independent risk factor for ARC. In addition, age and eGFR calculated using the Japanese equation were suggested to be useful screening tools for identifying Japanese patients with ARC.
A 72-year-old patient was admitted to the ICU due to acute respiratory distress syndrome caused by coronavirus disease 2019. On day 20, the patient experienced shock. The electrocardiogram showed ST segment elevation in leads V3–V6 and severe left ventricular dysfunction with an ejection fraction of 35%–40%. The left ventricle showed basal hypokinesis and apical akinesis, while the creatine kinase level was normal, indicating Takotsubo cardiomyopathy. On day 24, the patient died of multiple organ failure. In post-mortem biopsy, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen was detected in cardiomyocytes by immunostaining. Moreover, SARS-CoV-2 RNA was detected in heart tissue. We need to further analyze the direct link between SARS-CoV2 and cardiomyocytes.
未満に低下したのは 1 例のみであった.prothrombin time-international normalized ratio(PT-INR)は経過を通じて概ね正常で,activated partial thromboplastin time(APTT)は経過中 5 例で正常上限を上回ったが,1 例を除き大きく延長する事は無かった.一方,FDP と D-dimer は経 過中,正常上限を超えて推移し,2 例は第 7 病日以降に著明な再上昇を来した.以上より,重症 COVID-19 患者は感染症にも関わらず,凝固線溶異常は「線溶抑制型」でなく,あたかも「線溶亢 進型」の様相を呈していた.6 例中 4 例が Japanese Association for Acute Medicine criteria(JAAM) disseminated intravascular coagulation(DIC)診断基準で DIC と診断され,遺伝子組換え型ヒト可溶性 トロンモジュリン(rhsTM)が投与され,3 例が投与終了時点で DIC から離脱した.
The purpose of this study was to classify patients with severe COVID-19 into more detailed risk groups using coagulation/fibrinolysis, inflammation/immune response, and alveolar/myocardial damage biomarkers, as well as to identify prognostic markers for these patients. These biomarkers were measured every day for eight intensive care unit days in 54 adult patients with severe COVID-19. The patients were classified into survivor (n = 40) and non-survivor (n = 14) groups. Univariate and multivariate analyses showed that the combined measurement of platelet count and presepsin concentrations may be the most valuable for predicting in-hospital death, and receiver operating characteristic curve analysis further confirmed this result (area under the curve = 0.832). Patients were consequently classified into three groups (high-, medium-, and low-risk) on the basis of their cutoff values (platelet count 53 × 103/µL, presepsin 714 pg/mL). The Kaplan–Meier curve for 90-day survival by each group showed that the 90-day mortality rate significantly increased as risk level increased (P < 0.01 by the log-rank test). Daily combined measurement of platelet count and presepsin concentration may be useful for predicting in-hospital death and classifying patients with severe COVID-19 into more detailed risk groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.