Copper plays a key role in angiogenesis and in the synthesis and stabilization of extracellular matrix skin proteins, which are critical processes of skin formation. We hypothesized that introducing copper into wound dressings would enhance wound repair. Application of wound dressings containing copper oxide to wounds inflicted in genetically engineered diabetic mice (C57BL/KsOlaHsd-Lepr(db)) resulted in increased gene and in situ up-regulation of proangiogenic factors (e.g., placental growth factor, hypoxia-inducible factor-1 alpha, and vascular endothelial growth factor), increased blood vessel formation (p<0.05), and enhanced wound closure (p<0.01) as compared with control dressings (without copper) or commercial wound dressings containing silver. This study proves the capacity of copper oxide-containing wound dressings to enhance wound healing and sheds light onto the molecular mechanisms by which copper oxide-impregnated dressings stimulate wound healing.
Fracture-related infections remain a leading cause of morbidity and mortality. We aimed to establish a simple contaminated radial osteotomy model to assess the efficacy of a biodegradable polymer poly(sebacic-co-ricinoleic acid) [p(SA-RA)] containing 20% w/w gentamicin. A unilateral transverse osteotomy was induced in Sprague-Dawley (SD) rats, followed by application of Staphylococcus aureus suspension over the fracture. After successfully establishing the contaminated open fracture model, we treated the rats either systemically (intraperitoneal cefuroxime), locally with p(SA-RA) containing gentamicin, or both. Control groups included non-contaminated group and contaminated groups that were either untreated or treated with the polymer alone. After 4 weeks, the bones were subjected to micro-CT scanning and microbiological and histopathology evaluations. Micro-CT analysis revealed similar changes in the group subjected to both local and systemic treatment as in the non-contaminated control group. Lack of detectable bacterial growth was noted in most animals of the group subjected to both local and systemic treatment, and all samples were negative for S. aureus . Histopathological evaluation revealed that all treatment modalities containing antibiotics were highly effective in reducing infection and promoting callus repair, resulting in early bone healing. While p(SA-RA) containing gentamicin treatment showed better results than cefuroxime, the combination of local and systemic treatment displayed the highest therapeutic potential in this model.
Bleeding during surgical procedures is a common complication. Therefore, hemostatic agents have been developed to control bleeding, and fibrin sealants have several benefits. sFilm-FS is a novel fibrin sealant that comprises a biodegradable copolymeric film embedded with human fibrinogen and thrombin. Herein, the safety and efficacy of sFilm-FS were compared using a liver and spleen puncture model of Göttingen minipigs with those of the standard hemostatic techniques (control animals) and EVARREST ® , a reference fibrin sealant. Hemostasis and reduced blood loss were more effectively achieved with sFilm-FS than with the standard techniques in the control animals and comparable to those achieved with EVARREST ® . No treatmentrelated adverse effects were observed in any of the groups. Histopathological evaluation indicated that sFilm-FS was slightly and moderately reactive at the liver puncture site and spleen, respectively, compared with the standard techniques in the control animals. These changes are expected degradation reactions of the copolymeric film and are not considered as adverse events. No treatment-related abnormalities were noted in the other evaluated organs. Additionally, no evidence of local or systemic thromboses was noted. These results support the use of sFilm-FS for hemostasis in humans.
Osteoarthritis (OA) can lead to a significant functional disability. Poly[2-(methacryloyloxy)ethyl phosphorylcholine] (pMPC) liposomes are a novel treatment modality for OA, intended to restore the natural lubrication properties of articular cartilage. Here, we report on two studies aimed to assess the local and systemic safety and toxicity of pMPCylated liposomes in comparison with physiological saline, in Sprague-Dawley (SD) rats and in sheep after a single intra-articular (IA) injection. The animals were sacrificed after 1 and 6 weeks (rats) and 3 and 6 weeks (sheep). No signs of toxicity or abnormal clinical findings were observed. Histopathological evaluation revealed no signs of reactivity or abnormal findings in the injected joints or in any other organs. In conclusion, a single IA injection of the pMPCylated liposomes demonstrated an excellent safety profile and did not result in local reactivity or systemic toxicity, thus supporting its further development for use in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.