SUMMARY
We investigated the seasonal abundance of the dinoflagellate Heterocapsa triquetra (Ehrenberg) F. Stein, as well as the relevant in situ environmental factors, in brackish Lake Shihwa, Korea. We also examined the growth rates and morphological characteristics of the species in laboratory cultures. In the field, the population densities of H. triquetra remained at low levels from late spring to early summer, and then completely disappeared from August to November 2007. Interestingly, a dense bloom of H. triquetra appeared below the ice surface on 17 January 2008; identities of the cells were confirmed by rDNA sequence comparisons. The second peak reached a density of 672 × 103 cells L−1 on 28 March 2008, at a water temperature of 9.1°C. Laboratory experiments showed that growth rates of H. triquetra increased with incremental temperature increases within the range of 10 and 20°C. The highest growth rate reached by H. triquetra was 0.62 d−1 at 20°C with a salinity of 30. Above 25°C, the dinoflagellate was unable to grow between salinities of 10 and 15, and reached only relatively low growth rates (<0.12 d−1) under other salinity conditions. However, under continuous cultures at 5°C and 8°C, H. triquetra cells retained its growth capability for more than 12 days, implying that H. triquetra can survive and grows even at very low temperatures. The equivalent spherical diameter (ESD) of H. triquetra did not change markedly between 10 and 25°C, but the equivalent spherical diameter was significantly different at 5°C. The cell volume buildup of H. triquetra at low temperatures is one of the important survival strategies to overcome the harsh environmental conditions. These characteristics make H. triquetra a consistently dominant dinoflagellate in Lake Shihwa during the cold winter season.
The high-level quantum chemistry ab initio multi-reference configuration interaction method (MRCI) with reasonable aug-cc-p VQZ basis sets is used to calculate the potential energy curves of 5 -S states of BS+ radical related to the dissociation limit B+(1Sg)+S(3Pg) and B+(1Sg)+S(1D), where the ground state of X3 is determined. The spin-orbit interaction is firstly considered, which makes the calculated 5 -S states split in to 9 states. Calculated results show that avoided crossing rule exists between the states of the same symmetry. Analysis of electronic structures of -S states shows that the -S electronic states are multi-configuration in nature. Then the spectroscopic constants of the bound -S and states are obtained by solving the radial Schrdinger equation. All of these data will provide accurate information of the electron structure for further research on BS+ in theory and experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.