The aim of this study was to compare the effects of cellulose and three soluble dietary fibers, pectin, konjac glucomannan (KGM), and inulin, on the cytotoxicity and DNA damage of fecal water-treated Caco-2 cells, a human colon adenocarcinoma cell line, and to investigate the fecal components that potentially modulate the fecal toxicity, that is, bacterial enzymes, bile acids, and short-chain fatty acids. Six-week-old BALB/cJ mice were randomly allocated to consume an AIN-93 diet that contained no dietary fiber (fiber-free) or 5% (w/w) cellulose, pectin, KGM, and inulin for 3 weeks. Feces were collected during days 18-21. Fecal waters were co-incubated with Caco-2 cells to determine the cytotoxicity and DNA damage. In addition, the fecal bacterial enzymes, bile acids, and short-chain fatty acids were determined. Results indicated that all fiber diets similarly increased the survival rate (%) of fecal water-treated Caco-2 cells as compared with the fiber-free diet. The inhibition of fecal water-induced DNA damage in Caco-2 cells was greater for the pectin and inulin diets than for the cellulose and KGM diets. In contrast, cellulose exerted the greatest inhibitory effect on the fecal β-glucuronidase activity. Cellulose and all soluble dietary fibers reduced the secondary bile acid concentrations in the fecal water, but only soluble fibers increased the fecal concentrations of short-chain fatty acids, as compared with no fiber. Therefore, this study suggests that all dietary fibers substantially reduced the fecal water toxicity, which is associated with decreased secondary bile acid levels by all fibers, reduced fecal β-glucuronidase activity by cellulose, and increased short-chain fatty acid levels by soluble dietary fibers.
Hydrogen sulfide (H 2 S) is a hazardous gas found in living organisms and is directly tied to our daily lives. Recent studies show that it plays a significant role in plant growth, development, and response to environmental stresses. However, few of the reported near-infrared (NIR) fluorescent probes have been applied to rice and deeply investigated the influence of the external environment on the biological molecules in its internal environment. Therefore, our team created BSZ-H 2 S, which has the advantage of an emission wavelength of up to 720 nm with fast response, successfully applying it to cell and zebrafish imaging. More importantly, the probe detected H 2 S in rice roots by in situ imaging in a facile manner and verified the existence of an upregulation process of H 2 S in response to salt and drought stress. This work provides a concept for the intervention of external stresses in rice culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.