In this study, a series of resonant-column experiments were conducted on marine clays from Bohai Bay and Hangzhou Bay, China. The characteristics of the dynamic shear modulus (G) and damping ratio (D) of these marine clays were examined. It was found that G and D not only vary with shear strain (γ), but they also have a strong connection with soil depth (H) (reflected by the mean effective confining pressure (σm) in the laboratory test conditions). With increasing H (σm) and fixed γ, the value of G gradually increases; conversely, the value of D gradually decreases, and this is accompanied by the weakening of the decay or growth rate. An intelligent model based on a back-propagation neural network (BPNN) was developed for the calculation of these parameters. Compared with existing function models, the proposed intelligent model avoids the forward propagation of data errors and the need for human intervention regarding the fitting parameters. The model can accurately predict the G and D characteristics of marine clays at different H (σm) and the corresponding γ. The prediction accuracy is universal and does not strictly depend on the number of neurons in the hidden layer of the neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.