The Woda area in the upper Jinsha River has steep terrain and broken structures, causing landslide disasters frequently. Here, we used the distributed scatterer interferometric SAR (DS-InSAR) method to monitor and analyze the Woda landslide area. With the DS-InSAR method, we derived the deformation of the Woda landslide area from 106 Sentinel-1A ascending images acquired between 5 November 2014 and 4 September 2019 and 102 Sentinel-1A descending images acquired between 31 October 2014 and 11 September 2019. The obvious advantage of the DS-InSAR method compared to the persistent scatterer (PS) InSAR (PS-InSAR) method is that the densities of the monitoring points were increased by 25.1% and 22.9% in the ascending and descending images, respectively. The two-dimensional deformation of the landslide area shows that the maximum surface deformation rate in the normal direction was −80 mm/yr, and in the east–west direction, 118 mm/yr. According to the rescaled range (R/S) analysis, the Hurst index values of the deformation trends were all greater than 0.5, which means the deformation trend will continue for some time. In addition, we analyzed the influencing factors and the deformation mechanism of the Woda landslide area and found that the surface deformation is closely related to the geological structure and precipitation, among which precipitation is the main factor triggering the deformation. Our monitoring results will help the local government to conduct regular inspections and strengthen landslide disaster prevention in low-coherence mountainous areas.
Ground-based synthetic aperture radar interferometry (GB-InSAR) has the characteristics of high precision, high temporal resolution, and high spatial resolution, and is widely used in highwall deformation monitoring. The traditional GB-InSAR real-time processing method is to process the whole data set or group in time sequence. This type of method takes up a lot of computer memory, has low efficiency, cannot meet the timeliness of slope monitoring, and cannot perform deformation prediction and disaster warning forecasting. In response to this problem, this paper proposes a GB-InSAR time series processing method based on the LSTM (long short-term memory) model. First, according to the early monitoring data of GBSAR equipment, the time series InSAR method (PS-InSAR, SBAS, etc.) is used to obtain the initial deformation information. According to the deformation calculated in the previous stage and the atmospheric environmental parameters monitored, the LSTM model is used to predict the deformation and atmospheric delay at the next time. The phase is removed from the interference phase, and finally the residual phase is unwrapped using the spatial domain unwrapping algorithm to solve the residual deformation. The predicted deformation and the residual deformation are added to obtain the deformation amount at the current moment. This method only needs to process the difference map at the current moment, which greatly saves time series processing time and can realize the prediction of deformation variables. The reliability of the proposed method is verified by ground-based SAR monitoring data of the Guangyuan landslide in Sichuan Province.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.