This study provided the first evidence that omentin-1 may serve as a novel therapeutic target for atherosclerosis and CAD.
Background-Human salusins, related bioactive polypeptides with mitogenic effects on vascular smooth muscle cells and fibroblasts and roles in hemodynamic homeostasis, may be involved in the origin of coronary atherosclerosis. Macrophage foam cell formation, characterized by cholesterol ester accumulation, is modulated by scavenger receptor (cholesterol influx), acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1; storage cholesterol ester converted from free cholesterol), and ATP-binding cassette transporter A1 (cholesterol efflux). Methods and Results-Serum salusin-␣ levels were decreased in 173 patients with angiographically proven coronary artery disease compared with 40 patients with mild hypertension and 55 healthy volunteers (4.9Ϯ0.6 versus 15.4Ϯ1.1 and 20.7Ϯ1.5 pmol/L, respectively; PϽ0.0001). Immunoreactive salusin-␣ and - were detected in human coronary atherosclerotic plaques, with dominance of salusin- in vascular smooth muscle cells and fibroblasts. After 7 days in primary culture, acetylated low-density lipoprotein-induced cholesterol ester accumulation in human monocytederived macrophages was significantly decreased by salusin-␣ and increased by salusin-. Salusin-␣ significantly reduced ACAT-1 expression in a concentration-dependent manner. In contrast, salusin- significantly increased ACAT-1 expression by 2.1-fold, with a maximal effect at 0.6 nmol/L. These effects of salusins were abolished by G-protein, c-Src tyrosine kinase, protein kinase C, and mitogen-activated protein kinase kinase inhibitors. ACAT activity and ACAT-1 mRNA levels were also significantly decreased by salusin-␣ and increased by salusin-; however, neither salusin-␣ nor salusin- affected scavenger receptor A function assessed by
Catestatin, a catecholamine-release inhibitory peptide, has multiple cardiovascular activities. Conflicting results have been recently reported by increased or decreased plasma levels of catestatin in patients with coronary artery disease (CAD). However, there have been no previous reports regarding the effects of catestatin on arteriosclerosis. This study evaluated the vasoprotective effects of catestatin on human macrophages, human aortic smooth muscle cells (HASMCs) and human umbilical vein endothelial cells (HUVECs) in vitro, and aortic atherosclerosis and wire injury-induced femoral artery neointimal hyperplasia in apolipoprotein E-deficient (ApoE) mice fed with a high-cholesterol diet. Histological expression of catestatin in coronary artery lesions and its plasma level were compared between CAD and non-CAD patients. Catestatin was abundantly expressed in cultured human monocytes, macrophages, HASMCs and HUVECs. Catestatin significantly suppressed lipopolysaccharide-induced upregulation of tumour necrosis factor-α, vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in HUVECs. Catestatin significantly suppressed inflammatory responses and oxidized low-density lipoprotein-induced foam cell formation associated with acyl-CoA:cholesterol acyltransferase-1 downregulation and ATP-binding cassette transporter A1 upregulation in human macrophages. Catestatin significantly suppressed migration, proliferation and collagen-1 expression without inducing apoptosis, and increased elastin and fibronectin expression in HASMCs. Administration of catestatin into ApoE mice significantly retarded entire aortic atherosclerotic lesions with declined contents of macrophages, SMCs and collagen fibres in atheromatous plaques, but not the femoral artery injury-induced neointimal hyperplasia. In CAD patients, catestatin levels were significantly decreased in plasma but increased in coronary atheromatous plaques. This study provided the first evidence that catestatin could prevent macrophage-driven atherosclerosis, but not SMC-derived neointimal hyperplasia after vascular injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.