Our model facilitated comparing the tumor microenvironments in tongue and lymph node lesions. The results support that tumorigenicity and tumor architecture in the host tongue environment depend on the origin and properties of the carcinoma cell lines and that metastatic progression may take place through heterogeneous tumor-host interactions.
The expression of mucosa-associated lymphoid tissue 1 (MALT1) that activates nuclear factor (NF)-κB in lymphocyte lineages is rapidly inactivated in oral carcinoma cells at the invasive front and the patients with worst prognosis. However, its mechanism to accelerate carcinoma progression remains unknown, and this study was carried out to examine the role in invasion. HSC2 oral carcinoma cells stably expressing wild-type MALT1 (wtMALT1) reduced the invasion of basement membrane matrices and collagen gels, and the dominant-negative form (∆MALT1)-expressing cells aggressively invaded into collagen gels. MALT1 decelerated proliferation and migration of cells and downregulated expression of matrix metalloproteinase 2 and 9, which were confirmed by short interfering RNA transfections. Reporter assays and immunoblot analysis showed that MALT1 does not affect the NF-κB pathway but inhibits ERK/MAPK activation. This was confirmed by endogenous MALT1 expression in oral carcinoma cell lines. Orthotopic implantation of ∆MALT1-expressing HSC2 cells in mice grew rapid expansive and invasive tongue tumors in contrast to an absence of tumor formation by wtMALT1-expressing cells. These results demonstrate that MALT1 suppresses oral carcinoma invasion by inhibiting proliferation, migration, and extracellular matrix degradation and that the ERK/MAPK pathway is a target of MALT1 and further suggests a role as a suppressor of carcinoma progression.
Lymphatic development in mice is initiated in the trunk at embryonic day (E) 9.5. This study aimed to examine the origin of craniofacial lymphatic endothelial cells (LECs) and the developmental process of lymphatic vessels in the mouse craniofacial region. Serial sections from ICR mouse embryos at E9.5-E14.5 were immunolabeled with LEC and venous endothelial cell (VEC) markers. These markers included prospero homeobox protein 1 (Prox1), vascular endothelial growth factor receptor 3 (Vegfr3), lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), and C-C motif chemokine 2 (Ccl21) for LEC, and COUP transcription factor 2 (CoupTF2) and endomucin (Emcn) for VEC. LECs were monitored as an index in Prox1/Vegfr3 double-positive cells using three-dimensional analysis because LECs express Prox1 and Vegfr3 ab initio during lymphatic vascular development. LECs appeared in VECs of the lateral walls of cardinal veins (CVs) at E9.5. These LECs were dichotomized into LEC populations that formed lymph sacs close to CVs and were scattered in the surrounding CVs. The scattered LECs formed cellular streams and extended from the trunk to the mandibular arches at E10.5 - E11.5. In the mandibular arches, individual LECs aggregated, and formed lymph sacs and tubular lymphatic vessels at E11.5-E14.5. Expression of the LEC marker proteins Lyve1 and Ccl21 in LECs changed during craniofacial lymphatic vascular development. Collectively, these findings suggest that craniofacial LECs originate from CVs of the trunk and migrate into the mandibular arches. Additionally, we found that craniofacial lymphatic vessels are formed according to morphogenesis of individual LECs that migrate from CVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.