This paper is concerned with a stochastic predator-prey model with Holling II increasing function in the predator. By applying the Lyapunov analysis method, we demonstrate the existence and uniqueness of the global positive solution. Then we show there is a stationary distribution which implies the stochastic persistence of the predator and prey in the model. Moreover, we obtain respectively sufficient conditions for weak persistence in the mean and extinction of the prey and extinction of the predator. Finally, some numerical simulations are given to illustrate our main results and the discussion and conclusion are presented.
In this paper, we study a stochastic Holling-type II predator-prey model with stage structure and refuge for prey. Firstly, the existence and uniqueness of the global positive solution of the system are proved. Secondly, the stochastically ultimate boundedness of the solution is discussed. Next, sufficient conditions for the existence and uniqueness of ergodic stationary distribution of the positive solution are established by constructing a suitable stochastic Lyapunov function. Then, sufficient conditions for the extinction of predator population in two cases and that of prey population in one case are obtained. Finally, some numerical simulations are presented to verify our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.