A broad-range 16S rRNA gene PCR assay followed by partial sequencing of the 16S rRNA gene was used for the detection of members of the family Anaplasmataceae in ticks in North Africa. A total of 418 questing Ixodes ricinus ticks collected in Tunisia and Morocco, as well as 188 Rhipicephalus ticks from dogs and 52 Hyalomma ticks from bovines in Tunisia, were included in this study. Of 324 adult I. ricinus ticks, 16.3% were positive for Ehrlichia spp., whereas only 3.4 and 2.8% of nymphs and larvae, respectively, were positive. A large heterogeneity was observed in the nucleotide sequences. Partial sequences identical to that of the agent of human granulocytic ehrlichiosis (HGE) were detected in I. ricinus and Hyalomma detritum, whereas partial sequences identical to that of Anaplasma platys were detected in Rhipicephalus sanguineus. However, variants of Anaplasma, provisionally designated Anaplasma-like, were predominant in the I. ricinus tick population in Maghreb. Otherwise, two variants of the genus Ehrlichia were detected in I. ricinus and H. detritum. Surprisingly, a variant of Wolbachia pipientis was evidenced from I. ricinus in Morocco. These results emphasized the potential risk of tick bites for human and animal populations in North Africa.
Background Anaplasma phagocytophilum , the causative agent of granulocytic anaplasmosis, affects several species of wild and domesticated mammals, including horses. We used direct and indirect methods to compare and evaluate exposure to A. phagocytophilum in horses in northern Tunisia.MethodsSerum from 60 horses was tested by IFA for antibodies to A. phagocytophilum , and whole blood was tested for A. phagocytophilum 16S rRNA gene using a nested-PCR. To examine the risk of A. phagocytophilum transmission, 154 ticks that had been collected from horses were examined for the presence of A. phagocytophilum by nested-PCR targeting 16S rRNA gene.ResultsThis is the first time that A. phagocytophilum has been detected in horses in Tunisia, with an overall seroprevalence of 40/60 (67%). Six of the seroreactive samples (10%) had an IFA titer of 1:80, 14 (23%) of 1:160, 8 (13%) of 1:320 and 12 (20%) a titer 1 ≥ 640. The seroprevalence revealed no significant regional and sex differences. In contrast, a significant difference was observed between breeds. Eight (13%) of the horses were positive for A. phagocytophilum in the PCR, with no significant breed and age differences. Hyalomma marginatum was a predominant tick species (130/154), and 3 were infected by A. phagocytophilum (a prevalence of 2.3%). The concordance rate of A. phagocytophilum detection between IFA and PCR had a k value of −0.07.ConclusionsThe results presented in this study suggest that horses infested by ticks in Tunisia are exposed to A. phagocytophilum.
Background The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. Results We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. Conclusion This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully. Electronic supplementary material The online version of this article (10.1186/s12864-019-6042-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.