The objective of this study was to evaluate the pharmacokinetic profile of enrofloxacin and its active metabolite, ciprofloxacin, in Korean catfish after intravenous and oral administrations. Enrofloxacin was administered to Korean catfish by a single intravenous and oral administrations at the dose of 10 mg/kg body weight. The plasma concentrations from intravenous and oral administrations of enrofloxacin were determined by LC/MS. Pharmacokinetic parameters from both routes were described to have a two-compartmental model. After intravenous and oral administrations of enrofloxacin, the elimination half-lives (t(1/2,beta)), area under the drug concentration-time curves (AUC), oral bioavailability (F) were 17.44 +/- 4.66 h and 34.13 +/- 11.50 h, 48.1 +/- 15.7 microgxh/mL and 27.3 +/- 12.4 microgxh/mL, and 64.59 +/- 4.58% respectively. The 3.44 +/- 0.81 h maximum concentration (C(max)) of 1.2 +/- 0.2 microg/mL. Ciprofloxacin, an active metabolite of enrofloxacin, was detected at all the determined time-points from 0.25 to 72 h, with the C(max) of 0.17 +/- 0.08 microg/mL for intravenous dose. After oral administration, ciprofloxacin was detected at all the time-points except 0.25 h, with the C(max) of 0.03 +/- 0.01 microg/mL at 6.67 +/- 2.31 h. Ciprofloxacin was eliminated with terminal half-life t(1/2,beta) of 52.08 +/- 17.34 h for intravenous administration and 52.43 +/- 22.37 h for oral administration.
The pharmacokinetics of florfenicol and its active metabolite florfenicol amine were investigated in rabbits after a single intravenous (i.v.) and oral (p.o.) administration of florfenicol at 20 mg/kg bodyweight. The plasma concentrations of florfenicol and florfenicol amine were determined simultaneously by an LC/MS method. After i.v. injection, the terminal half-life (t(1/2lambdaz)), steady-state volume of distribution, total body clearance and mean residence time of florfenicol were 0.90 +/- 0.20 h, 0.94 +/- 0.19 L/kg, 0.63 +/- 0.06 L/h/kg and 1.50 +/- 0.34 h respectively. The peak concentrations (C(max)) of florfenicol (7.96 +/- 2.75 microg/mL) after p.o. administration were observed at 0.90 +/- 0.38 h. The t(1/2lambdaz) and p.o. bioavailability of florfenicol were 1.42 +/- 0.56 h and 76.23 +/- 12.02% respectively. Florfenicol amine was detected in all rabbits after i.v. and p.o. administration. After i.v. and p.o. administration of florfenicol, the observed Cmax values of florfenicol amine (5.06 +/- 1.79 and 3.38 +/- 0.97 microg/mL) were reached at 0.88 +/- 0.78 and 2.10 +/- 1.08 h respectively. Florfenicol amine was eliminated with an elimination half-life of 1.84 +/- 0.17 and 2.35 +/- 0.94 h after i.v. and p.o. administration respectively.
Isoflavones decrease blood pressure, improve lipid profiles, and restore vascular function. We hypothesized that isoflavone attenuates vascular contraction by inhibiting RhoA/Rho-kinase signaling pathway. Rat aortic rings were denuded of endothelium, mounted in organ baths, and contracted with 11,9 epoxymethano-prostaglandin F 2␣ (U46619), a thromboxane A2 analog, or KCl 30 min after the pretreatment with genistein (4Ј,5,7-trihydroxyisoflavone), daidzein (4Ј,7-dihydroxyisoflavone), or vehicle. We determined the phosphorylation level of the myosin light chain (MLC 20 ), myosin phosphatase-targeting subunit 1 (MYPT1), and protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light-chain phosphatase of 17 kDa (CPI17) by means of the Western blot. We also measured the amount of GTP RhoA as a marker regarding RhoA activation. The cumulative additions of U46619 or KCl increased vascular tension in a concentration-dependent manner, which were inhibited by pretreatment with genistein or daidzein. Both U46619 (30 nM) and KCl (50 mM) increased MLC 20 phosphorylation levels, which were inhibited by genistein and daidzein. Furthermore, both genistein and daidzein decreased the amount of GTP RhoA activated by either U46619 or KCl. U46619 (30 nM) increased phosphorylation of the MYPT1 Thr855 and CPI17 Thr38 , which were also inhibited by genistein or daidzein. However, neither genistein nor daidzein inhibited phorbol 12,13-dibutyrate-induced vascular contraction and CPI17 phosphorylation. In conclusion, isoflavone attenuates vascular contraction, at least in part, through inhibition of the RhoA/Rho-kinase signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.