Here, a facile route to fabricate thin ferroelectric poly(vinylidene fluoride) (PVDF)/poly(methylmethacrylate) (PMMA) blend films with very low surface roughness based on spin‐coating and subsequent melt‐quenching is described. Amorphous PMMA in a blend film effectively retards the rapid crystallization of PVDF upon quenching, giving rise to a thin and flat ferroelectric film with nanometer scale β‐type PVDF crystals. The still, flat interfaces of the blend film with metal electrode and/or an organic semi‐conducting channel layer enable fabrication of a highly reliable ferroelectric capacitor and transistor memory unit operating at voltages as low as 15 V. For instance, with a TIPS‐pentacene single crystal as an active semi‐conducting layer, a flexible ferroelectric field effect transistor shows a clockwise I–V hysteresis with a drain current bistability of 103 and data retention time of more than 15 h at ±15 V gate voltage. Furthermore, the robust interfacial homogeneity of the ferroelectric film is highly beneficial for transfer printing in which arrays of metal/ferroelectric/metal micro‐capacitors are developed over a large area with well defined edge sharpness.
We demonstrate significantly improved performance of a nonvolatile polymeric ferroelectric field effect transistor (FeFET) memory using nanoscopic confinement of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) within self-assembled organosilicate (OS) lamellae. Periodic OS lamellae with 30 nm in width and 50 nm in periodicity were templated using block copolymer self-assembly. Confined crystallization of PVDF-TrFE not only significantly reduces gate leakage current but also facilitates ferroelectric polarization switching. These benefits are due to the elimination of structural defects and the development of an effective PVDF-TrFE crystal orientation through nanoconfinement. A bottom gate FeFET fabricated using a single-crystalline triisopropylsilylethynyl pentacene channel and PVDF-TrFE/OS hybrid gate insulator shows characteristic source-drain current hysteresis that is fully saturated at a programming voltage of ±8 V with an ON/OFF current ratio and a data retention time of approximately 10(2) and 2 h, respectively.
Tuned dielectric, pyroelectric and piezoelectric properties of ferroelectric P(VDF-TrFE) thin films by using mechanical loads J. Appl. Phys. 111, 044102 (2012) Dependence of threshold thickness of crystallization and film morphology on film processing conditions in poly(vinylidene fluoride-trifluoroethylene) copolymer thin films
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.