The effects of attenuation correction in rainfall estimation with X-band dual-polarization radar were investigated with a dense rain gauge network. The calibration bias in reflectivity (ZH) was corrected using a self-consistency principle. The attenuation correction ofZHand the differential reflectivity (ZDR) were performed by a path integration method. After attenuation correction,ZHandZDRwere significantly improved, and their scatter plots matched well with the theoretical relationship betweenZHandZDR. The comparisons between the radar rainfall estimation and the rain gauge rainfall were investigated using the bulk statistics with different temporal accumulations and spatial averages. The bias significantly improves from 70% to 0% withR(ZH). However, the improvement withR(ZH,ZDR)was relatively small, from 3% to 1%. This indicated that rainfall estimation using a polarimetric variable was more robust at attenuation than was a single polarimetric variable method. The bias did not show improvement in comparisons between the temporal accumulations or the spatial averages in either rainfall estimation method. However, the random error improved from 68% to 25% with different temporal accumulations or spatial averages. This result indicates that temporal accumulation or spatial average (aggregation) is important to reduce random error.
Non-precipitation echoes due to ground and sea clutter, chaff, anomalous propagation, biological targets, and interference in weather radar observations are major issues causing a decline in the accuracy of meteorological and hydrological applications based on radar data. Statistically based quality control techniques using polarimetric variables have improved the accuracy of radar echo classification, however their performance is affected by attenuation, nonuniform beam filling, and hydrometeor diversity as well as terrain blockage, beam broadening, and noise correction issues due to the quality degradation of polarimetric measurements. To address this, a new quality control algorithm, named clutter elimination algorithm for non-precipitation echo of radar data (CLEANER), was designed by employing independent feature parameters and variable classification conditions with spatial and temporal observation environments to adapt to these meteorological artifacts and observational limitations. CLEANER was applied to several precipitation cases with various non-precipitation echoes, showing improved performance compared with results from the fuzzy logic-based quality control algorithm in terms of non-precipitation echo removal as well as in precipitation echo conservation. In addition, CLEANER shows better computational efficiency and robustness, as well as an excellent expandability for different radar networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.