IEEE 802.15.4a networks can provide the geographic routing solution with high location accuracy for the indoor environments. However, in the non-line-of-sight (NLOS) environments, the IEEE 802.15.4a networks may have a large scale location error and an unstable communication link. In this article, we propose a location estimation and dynamic link detection scheme for the geographic routing in the NLOS environments. The proposed approach corrects the large scale location error and detects the NLOS link in the geographic routing procedure. Simulation and experimental results show that the proposed approach can enhance the performance of the geographic routing.
In wireless sensor networks (WSNs), location-based multicast routing (LMR) technique can increase the network life time and the channel capacity by reducing the number of duplicated data transmissions and control messages. However, previous LMR techniques can suffer from significant performance degradation due to concrete walls or other interfering objects deployed in the real environment, since they transmit the packets by using only the locations of the sensor nodes. To solve this problem, we propose an interference-aware location based multicast algorithm for WSNs. In the proposed algorithm, each node adjusts the energy cost for each link adaptively considering the interference effect and uses it for multicast decision in order to minimize the interference impact. Experimental results show that the proposed algorithm improves the delivery and energy performance when the network is affected by interference.※ 이 논문은 2012학년도 건국대학교의 연구년 교원 지원에 의하여 연구되었음
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.