Angelica gigas obtained from different geographical regions was characterized using (1)H nuclear magnetic resonance (NMR) spectroscopy and ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) followed by multivariate data analyses. Principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA) score plots from (1)H NMR and UPLC-MS data sets showed a clear distinction among A. gigas from three different regions in Korea. The major metabolites that contributed to the discrimination factor were primary metabolites including acetate, choline, citrate, 1,3-dimethylurate, fumarate, glucose, histamine, lactose, malate, N-acetylglutamate, succinate, and valine and secondary metabolites including decursin, decursinol, nodakenin, marmesin, 7-hydroxy-6-(2R-hydroxy-3-methylbut-3-ethyl)coumarin in A. gigas roots. The results demonstrate that (1)H NMR and UPLC-MS-based metabolic profiling coupled with chemometric analysis can be used to discriminate the geographical origins of various herbal medicines and to identify primary and secondary metabolites responsible for discrimination.
The fruit of Cornus officinalis Sieb. et Zucc. is commonly prescribed in Asian countries as a tonic formula. In this study, the hepatoprotective effect of ethanolic extracts of the fruit of C. officinalis (ECO) was investigated in a mouse model of acetaminophen- (APAP-) induced liver injury. Pretreatment of mice with ECO (100, 250, and 500 mg/kg for 7 days) significantly prevented the APAP (200 mg/kg) induced hepatic damage as indicated by the serum marker enzymes (AST, ALT, and LDH). Parallel to these changes, ECO treatment also prevented APAP-induced oxidative stress in the mice liver by inhibiting lipid peroxidation (MDA) and restoring the levels of antioxidant enzymes (SOD, CAT, and HO-1) and glutathione. Liver injury and collagen accumulation were assessed using histological studies by hematoxylin and eosin staining. Our results indicate that ECO can prevent hepatic injuries associated with APAP-induced hepatotoxicity by preventing or alleviating oxidative stress.
Sixty peony root training samples of the same age were collected from various regions in Korea and China, and their genetic diversity was investigated for 23 chloroplast intergenic space regions. All samples were genetically indistinguishable, indicating that the DNA-based techniques employed were not appropriate for determining the samples' regions of origin. In contrast, (1)H-nuclear magnetic resonance ((1)H-NMR) spectroscopy-based metabolomics coupled with multivariate statistical analysis revealed a clear difference between the metabolic profiles of the Korean and Chinese samples. Orthogonal projections on the latent structure-discrimination analysis allowed the identification of potential metabolite markers, including γ-aminobutyric acid, arginine, alanine, paeoniflorin, and albiflorin, that could be useful for classifying the samples' regions of origin. The validity of the discrimination model was tested using the response permutation test and blind prediction test for internal and external validations, respectively. Metabolomic data of 21 blended samples consisting of Korean and Chinese samples mixed at various proportions were also acquired by (1)H-NMR analysis. After data preprocessing which was designed to eliminate uncontrolled deviations in the spectral data between the testing and training sets, a new statistical procedure for estimating the mixing proportions of blended samples was established using the constrained least squares method for the first time. The predictive procedure exhibited relatively good predictability (adjusted R (2) = 0.7669), and thus has the potential to be used in the quality control of peony root by providing correct indications for a sample's geographical origins.
Pyrite has been the most commonly used medicinal mineral, and its toxicity was reduced by traditional processing operations including heating and quenching in vinegar. To verify the scientific effects of this process, pyrite was processed at temperatures up to 850 degrees C and through as many as five processing cycles. A metal extraction test was carried out from the processed pyrites on the assumption that pyrite medicines with the lowest toxic metal content would be most desirable. Increasing temperature and the number of processing cycles promoted phase change of pyrite to hematite, reduction of toxic metals in pyrite and their concentrations in the extraction solutions. However, the relationships between variations in extracted elements and the number of processing cycles at the same processing temperature were not clearly defined. Heating temperature is more important than the number of processing cycles for effective processing, and pyrite should be processed at the highest possible temperature in order to diminish highly toxic metals such as As and Pb.
Chemical profiles of medicinal plants could be dissimilar depending on the cultivation environments, which may influence their therapeutic efficacy. Accordingly, the regional origin of the medicinal plants should be authenticated for correct evaluation of their medicinal and market values. Metabolomics has been found very useful for OPEN ACCESSMolecules 2014, 19 6295 discriminating the origin of many plants. Choosing the adequate analytical tool can be an essential procedure because different chemical profiles with different detection ranges will be produced according to the choice. In this study, four analytical tools, Fourier transform near-infrared spectroscopy (FT-NIR), 1 H-nuclear magnetic resonance spectroscopy ( 1 H-NMR), liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectroscopy (GC-MS) were applied in parallel to the same samples of two popular medicinal plants (Gastrodia elata and Rehmannia glutinosa) cultivated either in Korea or China. The classification abilities of four discriminant models for each plant were evaluated based on the misclassification rate and Q 2 obtained from principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA), respectively. 1 H-NMR and LC-MS, which were the best techniques for G. elata and R. glutinosa, respectively, were generally preferable for origin discrimination over the others. Reasoned by integrating all the results, 1 H-NMR is the most prominent technique for discriminating the origins of two plants. Nonetheless, this study suggests that preliminary screening is essential to determine the most suitable analytical tool and statistical method, which will ensure the dependability of metabolomics-based discrimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.