Dorcus koreanus Jang and Kawai, 2008 was recently described as a valid species in Haenam, South Korea, based on morphology. However, the taxonomic position and relationships of this new species with the related species Dorcus japonicus and Dorcus carinulatus were not examined in detail. To address this issue, we evaluated the phylogenetic relationships of D. koreanus to its related species based on molecular analyses of mitochondrial 16S rRNA gene sequences. The molecular evidence suggested that D. koreanus and D. carinulatus are more closely related to each other than either is to D. Japonicus. The genetic divergence between D. koreanus and D. carinulatus ranged from 1.2 to 1.6%, whereas that between D. koreanus and D. japonicus ranged from 9.0 to 9.2%. By comparing the range of nucleotide substitutions within Lucanidae, we determined that the sequence distance between D. koreanus and D. carinulatus is smaller than that for required for species-level distinction. Therefore, we reduce D. koreanus to subspecies rank, as Dorcus carinulatus koreanus stat. nov.
Aporia crataegi, an Korean endangered species, was first analyzed for DNA barcode sequences based on 28-year-old dried specimens and compared barcode characters with 36 individuals of ten geographical populations of Eurasia. They were revealed to consist of five different haplotypes. Among them, haplotype I was mostly extensive and high frequency with 75%. The south Korean individuals were confirmed to be belonging to haplotype I and have no genetic isolation on COI gene. By these results, we consider that selection of the identical haplotype from other geographical populations may be a requirement prior to performing for conservation and restoration of the Korean population. We also propose to analyse the additional genetic markers in order to understand a more accurate genetic structures between haplotypes of this species.
Bumble bees are important alternative pollinators and model insects due to their highly developed sociality and colony management. In order to better understand their molecular mechanisms, studies focusing on the genetic and molecular aspects of their development and behavior are needed. Although quantitative real-time polymerase chain reaction (qRT-PCR) can be used to quantify the relative expression of target genes, internal reference genes (which are stably expressed across different lines and tissues) must first be identified to ensure the accurate normalization of target genes. In order to contribute to molecular studies on bumble bees, we used Bombus terrestris to determine the expression stability of eight reference genes (β-actin (ACT), Arginine Kinase (AK), Phospholipase A2 (PLA2), Elongation factor 1 alpha (EF-1), Ribosomal proteins (S5, S18, S28) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) in five different lines and several tissues (ovary, thorax, fat body, and head) using RT-qPCR procedures and four analysis programs (RefFinder, NormFinder, BestKeeper, and geNorm). In general, the S28, S5, and S18 ribosomal protein genes and the PLA2 and EF-1 genes showed the highest stability and were therefore identified as suitable reference genes for the bumble bee species and their defined lines and tissues. Our results also emphasized the need to evaluate the stability of candidate reference genes for any differently designed lines and tissue conditions in bumble bee species.
도입된 상업용 거저리(Zophobas atratus)의 분류 및 형태유사종 갈색거저리
ABSTRACTThe superworm, as known the larva of Zophobas morio, has been officially imported from 2011 and bred commercially in Korea. But it is named as the corrected scientific name, Zophobas atratus by junior synonym throughout traditional taxonomy in this study and newly designated Korean name as 'a-me-ri-ca-wang-geo-jeo-ri' in terms of resource management. Z. atratus was compared with wild native tenebrionids, Promethis valgipes and a commercial reared Tenebrio molitor on the basis of DNA barcode analysis. As the results, the average genetic divergence was 21.4% between Z. atratus and P. valgipes, and 20.9% between Z. atratus and T. molitor. These large divergences imply these tenebrionids species can be easily identified by DNA barcodes. The results of genetic divergences within species also suggest that Korean populations of Z. atratus, having the same haplotype, might be introduced from the same area of foreign country. On the other hand, a population of T. molitor was separated into two distinct intra-specific groups with DNA barcoding gaps ranged from 1.17-2.19%. We suppose that domestic breeding entities of T. molitor might be introduced and mixed from two different local groups. Through this study, we expect that classification for two tenebrionid introduced from foreign countries can be used for the management of insect resources in Korea.
In reared populations of Allomyrina dichotoma, commercial insects, the skin of last instar larvae was changed softer with opaque white, and infested grubs eventually died. To clarify the cause of the symptom, we collected the larvae of A. dichotoma from five farms and examined their intestinal bacterial florae using pyrosequencing technique. From those results, a member of Paenibacillus was found only in the larvae showing the symptom of disease. Through PCR analysis using a Paenibacillus specific primer set, we obtained the partial 16S rRNA gene sequence and confirmed the microbe as Paenibacillus sp. For clear identification, a whole guts was extracted from each larva showing the sign of the disease and incubated at 70 o C for 15 min to isolate spore forming bacteria. After then, each content of guts was cultured on MYPGP NAL agar medium(12.5 µg/ml of nalidixic acid) at 30 o C. The 16S rRNA gene sequence analysis for the isolated bacteria showed that they were closely related to P. rigui(97.9% similarity), to P. chinjuensis(96.1% similarity), and to P. soli(95.3% similarity). Additional tests including API test and cellular fatty acid composition analysis were performed, but the strain couldn't be identified at species level, suggesting it may represent novel species of the genus Paenibacillus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.