We aimed to investigate if a home meal replacement (HMR), designed with a low ω-6/ω-3 fatty acid ratio, improves cardiometabolic parameters, including metabolic syndrome (MetS) in obese individuals. We conducted a monocentric, controlled, randomized crossover trial. The HMR contains higher protein and fat content, lower carbohydrate content, and a lower ω6FA/ω3FA ratio than the regular diet. Sixty-four participants were randomized into two groups and switched to the other group following a 4-week intervention. While subjects in the HMR group were provided three HMRs daily, those in the control group were requested to maintain their regular dietary pattern. We conducted paired t-tests, repeated measures analysis of variance, and McNemar tests before and after the intervention. Body mass index (BMI) and weight were lower in the HMR group after adjusting for age, sex, and total energy intake and significantly changed in the between-group differences. The waist circumference, systolic blood pressure, triglycerides, triglyceride–glucose index, and triglyceride to high-density lipoprotein cholesterol ratio were reduced in the HMR group (all p < 0.05). The percentage of subjects with MetS significantly decreased from 39.1% at baseline to 28.1% post-intervention (p = 0.035). Using the HMR for 4 weeks reduced the BMI, weight, and MetS prevalence in individuals with obesity. This trial was registered at clinicaltrials.gov (NCT04552574).
This study was performed to design and to construct a digital soil cone index(CI) measuring device replacing conventional analog type devices. The device developed in the study consisted of a load cell, a rotary encoder and a motor with a decelerator as its main parts. The cone speed was controlled lower than 3.0 m/s which keeps the standard suggested by the ASABE S313.3 specification. The experiment was conducted in a soil bin system as well as in various fields. The CI data measured by the developed device were compared with those by an existing measurement device(SC900, Spectrum, USA). Based on the experiments at various field conditions, the CI measuring characteristic of the device was quite similar to that of the conventional device within a acceptable R 2 range of more than 0.5(mean=0.76). It was concluded that the digital cone index measuring device was an effective and comprehensive sensor for measuring soil strength.
This study was performed to develop a wireless system for measuring agricultural atmospheric factors using ubiquitous sensor network(USN). In the study, temperature, humidity and light intensity were selected and evaluated as major agricultural atmospheric factors. An USN system was designed and implemented by using Zigbex I and II (mote sensor nodes of MICA series) provided by Hanback Electronics, Korea. The system was tested in a greenhouse and an orchard. The experiment results showed that the suggested USN measuring system would be very effective on comprehensive measurement of the selected factors on the basis of time, day, spatial sequence with reasonable costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.