This study reports methods for general preparation of superhydrophobic surfaces on any type of material surface using musselinspired poly(dopamine) (pDA). The use of pDA presents several advantages over conventional superhydrophobic fabrication methods: development of superhydrophobicity in a material-independent manner, enhancement of mechanical stability, decreases in angle hysteresis, and applicability to 3D objects.
DNA hydrogel formation by isothermal amplification of complementary targets in microfluidic channels (DhITACT) is a new platform for rapid and accurate detection of infectious pathogens. DNA hydrogel is formed in situ within microfluidic channels by the isothermal rolling circle amplification process upon the selective binding of target strands from the biological fluid. Once the volume of DNA hydrogel sufficiently enlarges, it can selectively block the matching channels with target pathogens.
Recently, emerging functions utilizing phenolic molecules, such as surface functionalizing agents or bioadhesives, have attracted significant interest. However, the most important role of phenolic compounds is to produce carbonized plant matter called “coal”, which is widely used as an energy source in nearly all countries. Coalification is a long‐term, high‐temperature process in which phenols are converted into conducting carbonized matter. This study focuses on mimicking coalification processes to create conducting sealants from non‐conducting phenolic compounds by heat treatment. We demonstrate that a phenolic adhesive, tri‐hydroxybenzene (known as pyrogallol), and polyethylenimine mixture initially acts as an adhesive sealant that can be converted to a conducting carbon sealing material. The conductivity of the phenolic sealant is about 850 Ω−1 cm−1, which is an approximately two‐fold enhancement of the performance of carbon matter. Applications of the biomimetic adhesives described herein include conducting defect sealants in carbon nanomaterials and conducting binders for metal/carbon or ceramic/carbon composites.
H. Lee and co‐workers demonstrate, on page 3513, the novel platform for rapid and accurate detection of infectious pathogens. “DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels” (DhITACT) enables the naked‐eye detection of ebola and Bacillus Anthracis using a microfluidic array chip by selective blockage of the matching channels through in situ hydrogel formation when target pathogen strands are present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.