MicroRNAs (miRNAs) constitute a class of small noncodingRNAs that play important roles in a variety of biological processes including development, apoptosis, proliferation, and differentiation. Here we show that the expression of miR-199a and miR-199a* (miR-199a/a*), which are processed from the same precursor, is confined to fibroblast cells among cultured cell lines. The fibroblast-specific expression pattern correlated well with methylation patterns: gene loci on chromosome 1 and 19 were fully methylated in all examined cell lines but unmethylated in fibroblasts. Transfection of miR-199a and/or -199a* mimetics into several cancer cell lines caused prominent apoptosis with miR-199a* being more pro-apoptotic. The mechanism underlying apoptosis induced by miR-199a was caspasedependent, whereas a caspase-independent pathway was involved in apoptosis induced by miR-199a* in A549 cells. By employing microarray and immunoblotting analyses, we identified the MET proto-oncogene as a target of miR-199a*. Studies with a luciferase reporter fused to the 3-untranslated region of the MET gene demonstrated miR-199a*-mediated down-regulation of luciferase activity through a binding site of miR-199a*. Interestingly, extracellular signal-regulated kinase 2 (ERK2) was also down-regulated by miR-199a*. Coordinated down-regulation of both MET and its downstream effector ERK2 by miR199a* may be effective in inhibiting not only cell proliferation but also motility and invasive capabilities of tumor cells.
Here we report the isolation and characterization of mouse testicular cDNAs encoding the mammalian homologue of the Xenopus germ cell-specific nucleic acid-binding protein FRGY2 (mRNP3+4), hereafter designated MSY2. MSY2 is a member of the Y box multigene family of proteins; it contains the cold shock domain that is highly conserved among all Y box proteins and four basic/aromatic islands that are closely related to the other known germline Y box proteins from Xenopus, FRGY2, and goldfish, GFYP2. Msy2 undergoes alternative splicing to yield alternate N-terminal regions upstream of the cold shock domain. Although MSY2 is a member of a large family of nucleic acid-binding proteins, Southern blotting detects only a limited number of genomic DNA fragments, suggesting that Msy2 is a single copy gene. By Northern blotting and immunoblotting, MSY2 appears to be a germ cell-specific protein in the testis. Analysis of Msy2 mRNA expression in prepubertal and adult mouse testes, and in isolated populations of germ cells, reveals maximal expression in postmeiotic round spermatids, a cell type with abundant amounts of stored messenger ribonucleoproteins. In the ovary, MSY2 is present exclusively in diplotene-stage and mature oocytes. MSY2 is maternally inherited in the one-cell-stage embryo but is not detected in the late two-cell-stage embryo. This loss of MSY2 is coincident with the bulk degradation of maternal mRNAs in the two-cell embryo.
Edited by Tamas DalmayKeywords: MicroRNA miR-542-3p Cell cycle arrest Survivin 18S ribosomal RNA a b s t r a c t Survivin is a protein which functions as a mitotic regulator as well as apoptosis inhibitor. In this study, we show that introduction of synthetic miR-542-3p mimetic reduced both mRNA and protein levels of survivin. In A549 cells, luciferase reporter assay revealed that miR-542-3p targeted predicted binding sites in the 3 0 -untranslated region (3 0 -UTR) of survivin. We also demonstrate that ectopic expression of miR-542-3p inhibited cell proliferation by inducing Gap 1 (G1) and Gap 2/Mitosis (G2/M) cell cycle arrest. Collectively, these results suggest that survivin is a direct target of miR-542-3p and growth inhibition by miR-542-3p may have a potential utility as an anti-cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.