We report bifunctional three-dimensional (3D) Cu-MOFs with high selectivity of CO(2) over N(2) and H(2) as well as high catalytic activity for transesterification of esters. The Cu-MOFs containing Cu(2) dinuclear units connected by glutarates and bipyridyl ligands are formulated as [{Cu(2)(Glu)(2)(μ-bpa)}·(CH(3)CN)](n) (1) and [{Cu(2)(Glu)(2)(μ-bpp)}·(C(3)H(6)O)](n) (2) (Glu = glutarate, bpa = 1,2-bis(4-pyridyl)ethane, bpp = 1,3-bis(4-pyridyl)propane). These two new bifunctional 3D Cu-MOFs possess very similar pore shape with different pore dimensions. Their gas sorption behaviors were investigated by using CO(2), N(2) and H(2) at suitable temperatures. Both MOFs exhibited good CO(2) selectivity over N(2) and H(2). MOF 1 having a smaller pore dimension exhibited much higher CO(2) adsorption enthalpy than MOF 2 having a larger pore dimension. However, MOF 2 exhibited more enhanced CO(2) uptake ability than MOF 1. A subtle variation of pore dimension indeed influenced the CO(2) uptake ability somewhat significantly especially at higher temperatures such as 273 K and 298 K. Heterogeneous catalytic activities of the MOFs were also investigated in detail. Only MOF 1 appeared to be an efficient, mild, and easily recyclable heterogeneous catalyst for the transesterification of esters and constitutes a promising class of heterogeneous catalysts that allowed reuse without a significant loss of activity through twenty runs with ester.
The participation of multiple active oxidants generated from the reactions of two manganese(III) porphyrin complexes containing electron-withdrawing and -donating substituents with peroxyphenylacetic acid (PPAA) as a mechanistic probe was studied by carrying out catalytic oxidations of cyclohexene, 1-octene, and ethylbenzene in various solvent systems, namely, toluene, CH(2) Cl(2) , CH(3) CN, and H(2) O/CH(3) CN (1:4). With an increase in the concentration of the easy-to-oxidize substrate cyclohexene in the presence of [(TMP)MnCl] (1a) with electron-donating substituents, the ratio of heterolysis to homolysis increased gradually in all solvent systems, suggesting that [(TMP)Mn-OOC(O)R] species 2a is the major active species. When the substrate was changed from the easy-to-oxidize one (cyclohexene) to difficult-to-oxidize ones (1-octene and ethylbenzene), the ratio of heterolysis to homolysis increased a little or did not change. [(F(20) TPP)Mn-OOC(O)R] species 2b generated from the reaction of [(F(20) TPP)MnCl] (1b) with electron-withdrawing substituents and PPAA also gradually becomes involved in olefin epoxidation (although to a much lesser degree than with [(TMP)Mn-OOR] 2a) depending on the concentration of the easy-to-oxidize substrate cyclohexene in all aprotic solvent systems except for CH(3) CN, whereas Mn(V)=O species is the major active oxidant in the protic solvent system. With difficult-to-oxidize substrates, the ratio of heterolysis to homolysis did not vary except for 1-octene in toluene, indicating that a Mn(V)=O intermediate generated from the heterolytic cleavage of 2b becomes a major reactive species. We also studied the competitive epoxidations of cis-2-octene and trans-2-octene with two manganese(III) porphyrin complexes by meta-chloroperbenzoic acid (MCPBA) in various solvents under catalytic reaction conditions. The ratios of cis- to trans-2-octene oxide formed in the reactions of MCPBA varied depending on the substrate concentration, further supporting the contention that the reactions of manganese porphyrin complexes with peracids generate multiple reactive oxidizing intermediates.
A simple catalytic system that uses commercially available cobalt(II) perchlorate as the catalyst and 3-chloroperoxybenzoic acid as the oxidant was found to be very effective in the epoxidation of a variety of olefins with high product selectivity under mild experimental conditions. More challenging targets such as terminal aliphatic olefins were also efficiently and selectively oxidized to the corresponding epoxides. This catalytic system features a nearly nonradical-type and highly stereospecific epoxidation of aliphatic olefin, fast conversion, and high yields. Olefin epoxidation by this catalytic system is proposed to involve a new reactive Co(II)-OOC(O)R species, based on evidence from H(2)(18)O-exchange experiments, the use of peroxyphenylacetic acid as a mechanistic probe, reactivity and Hammett studies, EPR, and ESI-mass spectrometric investigation. However, the O-O bond of a Co(II)-acylperoxo intermediate (Co(II)-OOC(O)R) was found to be cleaved both heterolytically and homolytically if there is no substrate.
Using the sterically hindered terphenyl-based carboxylate, the tetrameric Co(ii) complex [Co4(μ3-OH)4(μ-O2CAr(4F-Ph))2(μ-OTf)2(Py)4] () with an asymmetric cubane-type core has been synthesized and fully characterized by X-ray diffraction, UV-vis spectroscopy, and electron paramagnetic resonance spectroscopy. Interestingly, the cubane-type cobalt cluster with 3-chloroperoxybenzoic acid as the oxidant was found to be very effective in the epoxidation of a variety of olefins, including terminal olefins which are more challenging targeting substrates. Moreover, this catalytic system showed a fast reaction rate and high epoxide yields under mild conditions. Based on product analysis and Hammett studies, the use of peroxyphenylacetic acid as a mechanistic probe, H2(18)O-exchange experiments, and EPR studies, it has been proposed that multiple reactive cobalt-oxo species Co(V)[double bond, length as m-dash]O and Co(IV)[double bond, length as m-dash]O were involved in the olefin epoxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.