This paper firstly reports key factors which are to be necessarily considered for the successful two-bit (four-level) cell operation in a phase-change random access memory (PRAM). They are 1) the writeand-verify (WAV) writing of four-level resistance states and 2) the moderate-quenched (MQ) writing of intermediate resistance levels, 3) the optimization of temporal resistance increase (so-called resistance drift) and 4) of resistance increase after thermal annealing. With taking into account of them, we realized a two-bit cell operation in diodeswitch phase change memory cells with 90nm technology. All of four resistance levels are highly write endurable and immune to write disturbance above 10 8 cycles, respectively. In addition, they are nondestructively readable above 10 7 read pulses at 100ns and 1uA.
IntroductionPhase-change random access memory (PRAM) is most promising to realize a multi-level cell (MLC) operation because it has very wide range of resistance across two orders of magnitude or the higher, with respect to writing current. According to the PRAM road map [1], it is expected that highest memory densities of PRAM become comparable to conventional memories such as NOR Flash and DRAM in coming years when MLC operation is fully accomplished. In this paper, we systematically investigated a four-level (two-bit) cell operation in diode-switch phase change memory cells with 90nm technology and discussed its possibilities and issues as well.
A novel processing method is developed for preparing sol-gel derived Pb(Zr1−xTix)O3 (x=0.47) thin films on Pt/Ti/SiO2/Si substrates. Using a modified precursor solution and a rapid heat treatment without pyrolysis, it was possible to obtain highly (111) oriented PZT thin films with high perovskite content at a low annealing temperature of 550 °C. The low temperature processing was assisted by taking advantage of the heterogeneous nucleation of the PZT films, which reduces the activation energy for perovskite phase formation. Using this method, the PZT thin films exhibited better dielectric and ferroelectric properties at 550 °C than those reported by other methods. For example, the PZT films annealed at 550 °C showed a well-saturated hysteresis loop at an applied voltage of 5 V with Pr and Ec of 12 μC/cm2 and 38 kV/cm, and their dielectric constant and dissipation factor at a frequency of 100 kHz were 410 and 0.021, respectively. The leakage current density was lower than 10−8 at an applied electric field of 150 kV/cm.
A method for lowering the processing temperature of PbZr1−xTixO3 (PZT) films was developed utilizing a laser-assisted two-step process. In the first step, perovskite phase was initiated in the PZT films to a furnace anneal at low temperatures in the range of 470–550 °C, depending on the Zr/Ti ratio. Later, the films were laser annealed (using KrF excimer laser) at room temperature to grow the perovskite phase, and to improve microstructure and ferroelectric properties. It was found that this two-step process was very effective in producing excellent quality ferroelectric PZT films at low temperatures. It should be noted that although laser annealing of amorphous and/or pyrochlore films directly (one-step process) produced perovskite phase, the ferroelectric properties of these films, irrespective of the composition, were rather unattractive. Some possible reasons for the ineffectiveness of the one-step process were discussed.
A simple catalytic system that uses commercially available cobalt(II) perchlorate as the catalyst and 3-chloroperoxybenzoic acid as the oxidant was found to be very effective in the epoxidation of a variety of olefins with high product selectivity under mild experimental conditions. More challenging targets such as terminal aliphatic olefins were also efficiently and selectively oxidized to the corresponding epoxides. This catalytic system features a nearly nonradical-type and highly stereospecific epoxidation of aliphatic olefin, fast conversion, and high yields. Olefin epoxidation by this catalytic system is proposed to involve a new reactive Co(II)-OOC(O)R species, based on evidence from H(2)(18)O-exchange experiments, the use of peroxyphenylacetic acid as a mechanistic probe, reactivity and Hammett studies, EPR, and ESI-mass spectrometric investigation. However, the O-O bond of a Co(II)-acylperoxo intermediate (Co(II)-OOC(O)R) was found to be cleaved both heterolytically and homolytically if there is no substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.