We address the effects of disorder on the conducting properties of metal and semiconducting carbon nanotubes. Experimentally, the mean free path is found to be much larger in metallic tubes than in doped semiconducting tubes. We show that this result can be understood theoretically if the disorder potential is longranged. The effects of a pseudospin index that describes the internal sublattice structure of the states lead to a suppression of scattering in metallic tubes, but not in semiconducting tubes. This conclusion is supported by tight-binding calculations.
Velocity map ion imaging of the H atoms formed in the photodissociation of vibrationally excited ammonia molecules measures the extent of adiabatic and nonadiabatic dissociation for different vibrations in the electronically excited state. Decomposition of molecules with an excited symmetric N-H stretch produces primarily ground state NH(2) along with a H atom. The kinetic energy release distribution is qualitatively similar to the ones from dissociation of ammonia excited to the electronic origin or to several different levels of the bending vibration and umbrella vibration. The situation is very different for electronically excited molecules containing a quantum of antisymmetric N-H stretch. Decomposition from that state produces almost solely electronically excited NH(2)*, avoiding the conical intersection between the excited state and ground state surfaces. These rotationally resolved measurements agree with our previous inferences from lower resolution Doppler profile measurements. The production of NH(2)* suggests that the antisymmetric stretching excitation in the electronically excited molecule carries it away from the conical intersection that other vibrational states access.
Comparing the recoil energy distributions of the fragments from one-photon dissociation of phenol-d(5) with those from vibrationally mediated photodissociation shows that initial vibrational excitation strongly influences the disposal of energy into relative translation. The measurements use velocity map ion imaging to detect the H-atom fragments and determine the distribution of recoil energies. Dissociation of phenol-d(5) molecules with an initially excited O-H stretching vibration produces significantly more fragments with low recoil energies than does one-photon dissociation at the same total energy. The difference appears to come from the increased probability of adiabatic dissociation in which a vibrationally excited molecule passes around the conical intersection between the dissociative state and the ground state to produce electronically excited phenoxyl-d(5) radicals. The additional energy deposited in electronic excitation of the radical reduces the energy available for relative translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.