The excitation coefficient αN2 is calculated for the excited metastable level of N2(A3∑u+) in nitrogen molecules. In addition, the dissociation coefficient of nitrogen molecules is investigated by making use of the Boltzmann distribution of the electrons in atmospheric plasmas. The excitation and electron-impact dissociation coefficients of nitrogen molecules are analytically expressed in terms of the electron temperature Te for evaluations of the reactive oxygen and nitrogen species in atmospheric plasmas. As an application example of these coefficients, the nitrogen monoxide generation through a microwave torch is carried out for a development of medical tool. The nitrogen monoxide concentration from a microwave plasma-torch can be easily controlled by the nitrogen flow rate, mole fraction of the oxygen gas, and the microwave power. A simple analytic expression of the nitrogen monoxide concentration is obtained in terms of the oxygen molecular density and gas flow rate. The experimental data agree remarkably well with the theoretical results from the analytical expression. A microwave nitrogen-torch can easily provide an appropriate nitrogen monoxide concentration for the wound healings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.