Reactive nitrogen species (RNS), including nitric oxide (NO⋅) has been known as one of the key regulatory molecules in the immune system. In this study, we generated RNS-containing water treated with microwave plasma-generated gas in which the major component was nitric oxide (PGNO), and the effect on the macrophage polarization was investigated. The RNS-containing water was diluted in complete cell culture media (PGNO-solution) into the concentration that did not induce cell death in RAW 264.7 murine macrophages. PGNO-solution upregulates M1-type macrophage activation and downregulates the characteristics of M2-type macrophage at the transcriptional level. In addition, the PGNO-solution-treated M2-like macrophages had higher potential in killing melanoma cells. The anticancer potential was also investigated in a syngeneic mouse model. Our results show that PGNO-solution has the potential to convert the fate of macrophages, suggesting PGNO-solution treatment as a supportive method for controlling the function of macrophages under the tumor microenvironment.
Heavy water (D 2 O) was introduced into a non-thermal plasma-jet (NTPJ) device to generate deuterium monoxide (OD) radicals at room temperature. Owing to the similar reactivity and low prevalence of deuterium in nature, OD radicals can be utilized to visualize the OH radical interactions with water and living cells. Escherichia coli in water were treated with OD radicals, and D atom incorporation into cells was visualized using time-of-flight SIMS and Nano-SIMS. The results show that D atoms from NTPJ reach the cytoplasm of E. coli in H 2 O, indicating the usefulness of this OD-tracking method for the study of radical interactions with living cells.
Mycobacterial cell walls comprise thick and diverse lipids and glycolipids that act as a permeability barrier to antibiotics or other chemical agents. The use of OH radicals from a non-thermal plasma jet (NTPJ) for the inactivation of mycobacteria in aqueous solution was adopted as a novel approach. Addition of water vapor in a nitrogen plasma jet generated OH radicals, which converted to hydrogen peroxide (H 2 O 2) that inactivated non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis H37Rv. A stable plasma plume was obtained from a nitrogen plasma jet with 1.91 W of power, killing Escherichia coli and mycobacteria effectively, whereas addition of catalase decreased the effects of the former. Mycobacteria were more resistant than E. coli to NTPJ treatment. Plasma treatment enhanced intracellular ROS production and upregulation of genes related to ROS stress responses (thiolrelated oxidoreductases, such as SseA and DoxX, and ferric uptake regulator furA). Morphological changes of M. smegmatis and M. tuberculosis H37Rv were observed after 5 min treatment with N 2 +H 2 O plasma, but not of pre-incubated sample with catalase. This finding indicates that the bactericidal efficacy of NTPJ is related to the toxicity of OH and H 2 O 2 radicals in cells. Therefore, our study suggests that NTPJ treatment may effectively control pulmonary infections caused by M. tuberculosis and nontuberculous mycobacteria (NTM) such as M. avium or M. abscessus in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.