These authors contributed equally to this work.
SUMMARYThe signal transduction pathway governed by the phytohormone abscisic acid (ABA) regulates not only abiotic stress responses but also early developmental programs such as seed dormancy, germination and seedling growth in response to environmental signals. Optimal plant growth and development depend on the integration of environmental stimuli and intrinsic developmental programs. Here, we show that the homeodomain transcription factors BLH1 and KNAT3, previously implicated in embryo sac development, have additional functions in ABA-mediated seed dormancy and early seedling development. The ABA-dependent induction of BLH1 and KNAT3 expression required the presence of functional PYR/PYL/RCAR receptors. The blh1 and knat3 mutants were less sensitive than the wild-type to ABA or salinity exposure during seed germination and early seedling development. In contrast, BLH1 over-expressing lines were hypersensitive to ABA and salinity, and exhibited increased expression of ABA-responsive genes, such as ABI3 and ABI5. BLH1 interacted with KNAT3 and enhanced the retention of KNAT3 in the nucleus. BLH1 and KNAT3 synergistically increased the ABA responses by binding to and subsequently activating the ABI3 promoter. Taken together, we propose that BLH1 and KNAT3 together modulate seed germination and early seedling development by directly regulating ABI3 expression.
SUMMARYBrassinosteroids (BRs) are essential for various aspects of plant development. Cellular BR homeostasis is critical for proper growth and development of plants; however, its regulatory mechanism remains largely unknown. BAT1 (BR-related acyltransferase 1), a gene encoding a putative acyltransferase, was found to be involved in vascular bundle development in a full-length cDNA over-expressor (FOX) screen. Over-expression of BAT1 resulted in typical BR-deficient phenotypes, which were rescued by exogenously applied castasterone and brassinolide. Analyses of BR profiles demonstrated that BAT1 alters levels of several brassinolide biosynthetic intermediates, including 6-deoxotyphasterol, typhasterol and 6-deoxocastasterone. BAT1 is mainly localized in the endoplasmic reticulum. BAT1 is highly expressed in young tissues and vascular bundles, and its expression is induced by auxin. These data suggest that BAT1 is involved in BR homeostasis, probably by conversion of brassinolide intermediates into acylated BR conjugates.
Integration of internal and external cues into developmental programs is indispensable for growth and development of plants, which involve complex interplays among signaling pathways activated by the internal and external factors (IEFs). However, decoding these complex interplays is still challenging. Here, we present a web-based platform that identifies key regulators and Network models delineating Interplays among Developmental signaling (iNID) in Arabidopsis. iNID provides a comprehensive resource of (1) transcriptomes previously collected under the conditions treated with a broad spectrum of IEFs and (2) protein and genetic interactome data in Arabidopsis. In addition, iNID provides an array of tools for identifying key regulators and network models related to interplays among IEFs using transcriptome and interactome data. To demonstrate the utility of iNID, we investigated the interplays of (1) phytohormones and light and (2) phytohormones and biotic stresses. The results revealed 34 potential regulators of the interplays, some of which have not been reported in association with the interplays, and also network models that delineate the involvement of the 34 regulators in the interplays, providing novel insights into the interplays collectively defined by phytohormones, light, and biotic stresses. We then experimentally verified that BME3 and TEM1, among the selected regulators, are involved in the auxin-brassinosteroid (BR)-blue light interplay. Therefore, iNID serves as a useful tool to provide a basis for understanding interplays among IEFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.