PurposeMesenchymal stromal cells (MSCs) have been used therapeutically to modulate inflammation and promote repair. Extracellular vesicles, including exosomes, have been identified as one of the important mediators. This study investigated the effect of human corneal MSC-derived exosomes on corneal epithelial wound healing.MethodsCorneal MSCs (cMSCs) were isolated from human cadaver corneas. The secretome was collected after 72 hours and exosomes were isolated using differential ultracentrifugation. Morphology and size of exosomes were examined by electron microscopy and dynamic light scattering. Expression of CD9, CD63, and CD81 by cMSC exosomes was evaluated by western blotting. Cellular uptake of exosomes was studied using calcein-stained exosomes. The effect of exosome on wound healing was measured in vitro using a scratch assay and in vivo after 2-mm epithelial debridement wounds in mice.ResultscMSC exosomes were morphologically round and main population ranged between 40 and 100 nm in diameter. They expressed CD9, CD63, and CD81, and did not express GM130, Calnexin, and Cytochrome-C. Stained cMSC exosomes were successfully taken up by human cMSCs, human corneal epithelial cells (HCECs), and human macrophages in vitro and by corneal epithelium in vivo. In scratch assay, after 16 hours, cMSC exosome treated HCECs had 30.1% ± 14% remaining wound area compared to 72.9% ± 8% in control (P < 0.005). In vivo, after 72 hours, cMSC exosome-treated corneas had 77.5% ± 3% corneal wound healing compared to 41.6% ± 7% in the control group (P < 0.05).ConclusionsHuman cMSC exosomes can accelerate corneal epithelial wound healing, and thus, may provide a therapeutic approach for ocular surface injuries.
Owing to large bandgaps of BAlN and AlGaN alloys, their heterojunctions have the potential to be used in deep ultraviolet and power electronic device applications. However, the band alignment of such junctions has not been identified. In this work, we investigated the band-offset parameters of a B0.14Al0.86 N/Al0.7Ga0.3N heterojunction grown by metalorganic vapor phase epitaxy. These specific compositions were chosen to ensure a sufficiently large band offset for deep ultraviolet and power electronic applications. High resolution transmission electron microscopy confirmed the high structural quality of the heterojunction with an abrupt interface and uniform element distribution. We employed high resolution X-ray photoemission spectroscopy to measure the core level binding energies of B 1s and Ga 2p3/2 with respect to the valence band maximum of B0.14Al0.86N and Al0.7Ga0.3N layers, respectively. Then, we measured the energy separation between the B 1s and Ga 2p3/2 core levels at the interface of the heterojunction. The valence band offset was determined to be 0.40 ± 0.05 eV. As a consequence, we identified a staggered-gap (type-II) heterojunction with the conduction band offset of 1.10 ± 0.05 eV. The determination of the band alignment of the B0.14Al0.86N/Al0.7Ga0.3N heterojunction facilitates the design of optical and electronic devices based on such junctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.